

Evoluzione delle strategie terapeutiche nel carcinoma gastrico: attualità e prospettive future

Ferdinando De Vita Oncologia Medica Dipartimento di Medicina di Precisione Università della Campania ["]Luigi Vanvitelli"

UNIVERSITÀ DEGLI STUD DELLA CAMPANIA LUIGI VANVITELLI How difficult is to treat metastatic GC?

Survival is <1 year in more than half of patients

High response rate, but complete responses to CT are rare

Responses are mostly of short duration

In mGC setting CT is the backbone of treatment but... ...limited progress with chemotherapy alone

Metastatic setting treatment What we know from clinical research...

Is the more the better? *Triplet or Doublet CT in Advanced Gastric Cancer?*

						Conserv Materiania D.m. (2018)	24.420 - 4.41	~	
Toxicity grade 3 or 4	Triplet	t			Double	Doublet			
but toxicity?	N	Total	%	N	Total	%	RR	95 % CI	
Hematologic toxicity									
Anemia	106	840	12.6	121	823	14.7	0.86	0.68-1.09	
Neutropenia	543	1006	54.0	470	986	47.7	1.07	0.92-1.23	
Neutropenic fever	46	385	11.9	46	367	12.5	0.95	0.50-1.82	
Thrombocytopenia	61	986	6.2	37	962	3.8	1.57^{a}	1.06-2.31	
Non-hematologic toxicity									
Fatigue	50	331	15.1	52	316	16.5	0.91	0.64-1.29	
Infection	64	630	10.2	40	629	6.4	1.60 ^a	1.09-2.33	
Mucositis	59	607	9.7	28	591	4.7	2.20 ^a	1.00-4.86	
Nausea	85	665	12.8	63	648	9.7	1.34	0.98-1.82	
Vomiting	84	728	11.5	81	716	11.3	1.04	0.78-1.38	
Diarrhea	114	1260	9.0	98	1244	7.9	0.98	0.60-1.61	
Toxicity-related deaths	68	1069	6.4	54	1052	5.1	1.24	0.89-1.74	

Is the more the better? **Triplet or Doublet CT in Advanced Gastric Cancer?** Med Oncol (2017) 34:186 DOI 10.1007/s12032-017-1046-ORIGINAL PAPER 165 pts with AGC treated with poliCT treated from Efficacy of a triplet and doublet-based chemotherapy as first-line 2012 through 2016 therapy in patients with HER2-negative metastatic gastric cancer: a retrospective analysis from the clinical practice Maria Maddalena Laterza¹ · Luca Pompella¹ · Angelica Petrillo¹ · Giuseppe Tirino¹ · Annalisa Pappalardo¹ · Michele Orditura¹ · Teresa Troiani¹ · Fortunato Ciardiello¹ · Natale Di Martino² · Ferdinando De Vita¹ 10 Table 2 Main toxicities for the ECX (n: 79) FOLFOX-4 (n: 86) ECX and FOLFOX-4 regimens G3 or G4 (%) All grades (%) All grades (%) G3 or G4 (%) Anemia 23 (29.1) 4 (9.3) 21(24.4)2(2.3)Neutropenia 35 (44.3) 25 (31.6) 15(17.4)8 (9.3) Febrile neutropenia 7 (7.5) 1(1.1)Thrombocytopenia 30 (37.9) 4 (5.0) 17 (19.1) 5 (5.8) Nausea 47 (59.4) 8 (10.1) 18 (20.9) 4 (4.6) Vomiting 22 (27.8) 16 (18.6) 2(2.3)10 (12.6) **Mucositis** 18 (22.7) 9 (11.3) 16 (18.6) 3 (3.4) 13 (15.1) Diarrhea 15(18.9)4 (5.0) 3(3.4)11(12.7)Fatigue 29 (36.7) 18 (22.7) 21(24.4)HFS 24(30.3)6(7.5)9 (10.4) 7 (8.8) 2(2.5)41 (47.6) 17 (19.7) Neuropathy U 3 9 o 12 Months

CrossMarl

Anthracyclines: which benefit? *No more Epirubicin!*

When triplet CT in Advanced Gastric Cancer? ...when needs high antitumor activity

LOCALLY ADVANCED UNRESECTABLE OR BORDERLINE RESECTABLE DISEASE British Journal of Cancer (2004) 90, 1521–1525 © 2004 Cancer Research UK All rights reserved 0007–0920/04 \$25.00 www.bjcancer.com

High curative resection rate with weekly cisplatin, 5-fluorouracil, epidoxorubicin, 6S-leucovorin, glutathione, and filgastrim in patients with locally advanced, unresectable gastric cancer: a report from the Italian Group for the Study of Digestive Tract Cancer (GISCAD)

When triplet CT in Advanced Gastric Cancer? ...when needs high antitumor activity

Mohammad NH, Cancer Metastasis Review 2015

When triplet CT in Advanced Gastric Cancer? ...when needs high antitumor activity

Metastatic disease with the potential for conversion surgery

Effect of Neoadjuvant Chemotherapy Followed by Surgical Resection on Survival in Patients With Limited Metastatic Gastric or Gastroesophageal Junction Cancer The AIO-FLOT3 Trial

Al-Batran SE, JAMA Oncology 2017

Target-oriented phase II/III trials in GC Not a success story!

Trial	Phase	Setting	Target	Arms	N Patients	Primary Endpoint	Result
ToGA	III	1st line	HER2+	$CF/CX \pm Trastuzumab$	594	OS	Positive
ЈАСОВ	III	1st line	HER2+	CF/CX+ Trastuzumab ± Pertuzumab	780	OS	Negative
GATSBY	II/III	2nd line	HER2+	Taxanes \pm TDM-1	345	OS	Negative
LOGIC	III	1st line	HER2+	CapeOX \pm Lapatinib	545	OS	Negative
TyTAN	III	2nd line	HER2+	Paclitaxel \pm Lapatinib	261	OS	Negative
EXPAND	III	1st line	EGFR (unselected)	$CX \pm Cetuximab$	894	PFS	Negative
REAL-3	III	1st line	EGFR (unselected)	$EOC \pm Panitumumab$	553	OS	Negative
METGastric	III	1st line	MET+	Folfox \pm Onartuzumab	562	OS	Negative
RILOMET-1	III	1st line	MET+	$ECX \pm Rilotumumab$	609	OS	Negative
SHINE	Π	2nd line	FGFGR2+	Paclitaxel \pm AZD4546	71	PFS	Negative
FAST	IIb	1st line	CLDN18.2+	$\mathrm{EOX}\pm\mathrm{Claudiximab}$	161	PFS	Positive
AVAGAST	III	1st line	VEGF	$CX \pm Bevacizumab$	774	OS	Negative
AVATAR	III	1st line	VEGF	$CX \pm Bevacizumab$	202	OS	Negative
REGARD	III	2nd line	VEGFR2	Ramucirumab vs. Placebo	355	OS	Positive
RAINBOW	III	2nd line	VEGFR2	Paclitaxel \pm Ramucirumab	665	OS	Positive
RAINFALL III	1st lin	ne VEGF	R2 CX± Ramucirui	mab 645 PFS	Positive		

Petrillo A & De Vita F, Int J Mol Siences 2018

Why so disappointing results? Genomic heterogeneity as a potential barrier to precision medicine

USA Cancer Genome Atlas (TCGA), 2014 Nature; Cristescu R, Nature Medicine 2015

Why so disappointing results? Genomic heterogeneity as a potential barrier to precision medicine

GC is a genomically heterogeneous disease: sampling a single site of the disease can never fully assess the clonal complexity of multisite metastatic disease in patients

Pectasides E, Cancer Discovery 2018 Kwak EL, Cancer Discovery 2015

Liquid biopsies to measure tumor heterogeneity

Discrepant biomarker profiling between paired PT, metastasis, and circulating cell-free DNA

Changes in plasma-detected genomic alterations are associated with Lapatinib sensitivity and/or resistance

Pectasides E, Cancer Discovery 2018

Kim ST, Ann Oncol 2018

Why so disappointing results? *Pts selection: rethinking anti-EGFR development*

Lordick F, Lancet Oncol 2013

Waddel T, Lancet Oncol 2013

Why so disappointing results? *Pts selection: rethinking anti-EGFR development*

Metastatic setting treatment Sequential treatment improves outcome

Asian pts: 69%

Non-Asian pts: 38%

Hess LM, Gastric Cancer, 2016; Davidson M, Clin Colorectal Cancer 2018; Fanotto V, Oncologist 2018

Sequential treatment improves outcome of mGC pts REGARD and RAINBOW suggest the 2nd line standard treatment

	Ramucirumab monotherapy fo gastric or gastro-oesophageal j (REGARD): an international, ran placebo-controlled, phase 3 tria	Articles or previously treated advanced @ () () unction adenocarcinoma ndomised, multicentre, al		REGAR	D and trials	RAINB	OW	Ramucirumab plus paclita patients with previously t gastro-oesophageal juncti a double-blind, randomise	xel versus placebo plus p reated advanced gastric ion adenocarcinoma (RA ed phase 3 trial	Articles aclitaxel in >^ or INBOW):
	A 100 - TH.	Overall	HR (95% CI)	=0-776 (0-603-0-998)		A 100-144	~~	Overa	all	Ramucirumab plus paditaxei
	Studies	Treatment	OS (mo)	HR OS	Delta (mo)	PFS (mo)	HR PFS	Delta (mo)	ORR (%)	DCR (%)
Nu R.	REGARD 2013	Ramucirumab BSC	5.2* 3.8	0.77	+1.4	2.1* 1.3	0.48	+0.8	3 3	49* 23
	RAINBOW 2014	Ramucirumab + Paclitaxel Paclitaxel	9.6* 7.3	0.80	+2.3	4.4* 2.8	0.63	+1.6	28* 16	80* 64
		time since randomisation	(monuns)			Number at rick	*st	atistically si	gnificant	-24
R	amucirumab 238 213 113 Placebo 117 92 27	65 61 45 30 18 18 11 9 11 7 4 2 2 2 2 3	5 4 2 1 2 1 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ra Placet	paciitaxel 330 2 paciitaxel po plus paciitaxel 335 2	59 188 104 14 124 50	70 43 28 34 21 12	15 11 7 8 5 3	3 1 . 3 3 .

Fuchs CS, Lancet Oncol 2014

Wilke H, Lancet Oncol 2014

The clinical relevance of Ramucirumab data Real world data: The RAMoss study

Ramucirumab as Second-Line Therapy in Metastatic Gastric Cancer: Real-World Data from the RAMoss Study

Maria Di Bartolomo" (a) - Monica Nigei - Giuseppe Trino" - Angelica Petrillo - ' Rosa Brenata' -Maria Maddene Latera - Filippe Piertantoi - ' Edecia Morano - Maria Antisa ' Sa Lo Lond' -Lorenzo Fornaro - Stefano Tamberi - Elias Giommoni" - Alberto Zaniboni - Lorenza Rimassa -Gianhoz Tomassino - Teodoro Sava - Masimiliano Spada - ' Tatana Latano' - Assanador do totogi -Savatore Gady '' - Jole Venziglia - Simone Scaspioli²⁰ - Andrea Spallanzani²⁴ - Raffaella Longarini²² -Ferdinando Towardo - Vita ²

	No. (%
G1/G2	
Neutrophil count decreased	25 (14
Nervous system disorders	44 (26
Fatigue	46 (27
Nausea	13 (7.7
Vomiting	7 (4.1
Diarrhea	19 (11.
Bleeding	10 (5.9
Hypertension	6 (3.5
Proteinuria	1 (0.6
Anemia	19 (11.
G3/G4	
Neutropenia	9 (5.4
Bleeding	3 (1.8
Fatigue	1 (0.6
Hypertension	1 (0.6

Outcomes	° RAINBOW WESTERN PTS	^RAMoss (RAM+PTX)	
mOS (mo)	8.6	8.3	
mPFS (mo)	4.2	4.5	
ORR (%)	26.8	20.3	
DCR (%)	76.8	59.7	
Neutropenia G3/4	32.1%	5.3%	
Severe bleeding G3/4	4.6%	2.4%	

The clinical relevance of Ramucirumab data Subgroup analysis of RAINBOW trials

RAMUCIRUMAB OS BENEFIT: SUBGROUP ANALYSES

paditatel paditare 0-807 (0-678-0-962 Overall 330 335 Time to progressive disease on first-line therapy <6 months 250 256 0-871 (0-714-1-062) 0-615 (0-422-0-896) 6 months 80 79 Disease measurability Non-measurable 63 67 1-101(0-739-1-641) 267 0750(0-617-0-911) Measurable 273 Geographical region 0726(0580-0909) 198 200 23 21 0797(0383-1660) 109 114 0.986 (0.727-1.337) Sex Male 0-814 (0-657-1-009) 229 243 Female 101 0-672 (0-483-0-935) 92 Age (years) < 65 204 212 0753 (0-604-0-939) a 65 126 0-861 (0-636-1-165) 123 ECOG performance status 117 144 0.778 (0.578-1.048) 213 191 0771 (0-619-0-962) Previous weight loss < 10% 277 286 0.797 (0.658-0.967) a 10% 47 0787 (0-494-1-253) 53 Primary tumour location 264 264 0-899 (0736-1-096) Gastric 0-521 (0-348-0-781) Gastro-oesophageal junction 66 71 Previous first-line chemotherapy Doublets 253 246 0-858 (0-700-1-052) 87 0-685 (0-480-0-979) Triplets 76 Histological subtype Intestinal 145 135 0705 (0-534-0-932) Diffuse 115 133 0-856 (0-641-1-145) Mixed, missing, or unknown 0.955 (0.631-1.446) 70 67 Number of metastatic sites -7 209 232 0749 (0598-0939) 121 0-815 (0-605-1-098) 103 Peritoneal metastasis 163 152 0-807 (0-627-1-038) 167 183 0758 (0589-0976) Previous gastrectorm 133 126 0-939 (0-697-1-263) 0753 (0-601-0-944) 197 209 Favours ramucirumab Favours placebo

Placebo-

Ramucirumab.

De Vita F & Muro K, Future Oncol 2019

Wilke H, Lancet Oncol 2014

HR (95% CI)

Metastatic setting treatment Sequential treatment improves outcome beyond 2nd line CT

Efficacy outcome: OS, PFS and ORR

D										
			Third-line treatment	Best supportive care		Hazard Ratio		Hazard	d Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 95% Cl	
Li 2013a	-1.575	0.3099	46	24	22.2%	0.21 [0.11, 0.38]		-		
Li 2013b	-1.7148	0.3245	47	24	21.4%	0.18 [0.10, 0.34]		-		
Li 2016	-0.8119	0.1494	176	91	32.2%	0.44 [0.33, 0.60]		-		
Pavlakis 2015	-1.1394	0.2763	56	29	24.2%	0.32 [0.19, 0.55]		-		
Total (95% CI)			325	168	100.0%	0.29 [0.18, 0.45]		•		
Heterogeneity: Tau ² = Test for overall effect: 2	0.14; Chi² = 9.64, df = Z = 5.47 (P < 0.0000	= 3 (P = 0 1)	0.02); I ² = 69%				0.01	0.1 Favours TLT	1 10 Favours BSC	100

Chan W, Crit Rev Oncol Hematol 2017

Sequential treatment improves outcome beyond 2nd line CT Evidence from TAGS trial

Shitara K, Lancet Oncol 2018

Anti-PD-1 therapy is superior to BSC in CT refractory GC pts ATTRACTION-2 & KEYNOTE-059

How to select pts for later line treatments?

Median OS was similar for pts receiving CT or PD-1 inhibitors								
	TAGS	ATTRACTION-02	KEYNOTE-059					
Med OS (mo)	5.7	5.3	5.6					
	Clinical features							
•	 safety profile tumor chemosensitivity response to early-line treatment 							
	Biolog	jical features						

ΤΟΧΙΟΙΤΥ	TAGS	ATTRACTION-2	KEYNOTE-059
Anemia	45%/19%		
Neutropenia	53%/34%		
Anorexia	34%/9%		
Diarrhea	23%/3%		
Interstitial lung ds		2%/1%	0.8%
Hypothyroidism		<1%/<1%	0.4%

How to select pts for later line treatments? Tumor chemosensitivity

VOLUME

Α

Probability of Survival (%)

100

80

60

40

20

0

JOURNAL OF CLINICAL ONCOLOGY Multivariate Prognostic Factor Analysis in Locally Advanced and Metastatic Esophago-Gastric Cancer-Pooled Analysis From Three Multicenter, Randomized, Controlled Trials Using Individual Patient Data Ian Chau, Andy R. Norman, David Cunningham, Justin S. Waters, Jacqui Oates, and Paul J. Ross 27 NUMBER 19 -JULY 1 2009 JOURNAL OF CLINICAL ONCOLOGY index Validation of the Royal Marsden Hospital Prognostic Index in ar survival (95% CI) Advanced Esophagogastric Cancer 3.5% (41.9 to 54.7%) Using Individual Patient Data From 5.7% (22.5 to 29.7%) % (5.6 to 18.4%) the REAL 2 Study DCO В Median survival 1-year survival (95% CI) 100 п Median survival 1-year survival (95% CI) n — Good risk 261 13.6 months 54.6% (48.4 to 60.4) Good risk 487 12.7 months 52.4% (47.8 to 56.7) Moderate risk 583 9.5 months 39.2% (35.2 to 43.1) Moderate risk 1,073 8.6 months 33.1% (20.3 to 36.0) 80 Poor risk 61 5.1 months 16.4% (8.4 to 26.7) Poor risk 161 4.3 months 13.7% (8.9 to 19.4) Log-rank P < .0001

Chau I, JCO 2004: Chau I, JCO 2009

How to select pts for later line treatments? Response to early-line treatment

Table 3. Univariate a	nd mu	ultivariate a	analyses										
	Univariate analysis							Multivariate analysis			alysis		Gastrointestinal Cancer
	PFS in third		n third-line		OS in third	-line		PFS in third-line			OS in third	-line	Uncolog1st*
Variable	HR	95% CI	p value	HR	95% CI	<i>p</i> value	HR	95% Cl	p value	HR	95% Cl	p value	Outcomes of Advanced Gastric Cancer Patients Treated with at Least
Intensity of treatment													Infee Lines of Systemic Chemotherapy Valentina Fanotio," Mario Ucceluo, ^b Irene Pecora, ⁴ Lorenza Rimassa, ⁴ Francesco Leone, ⁴ Gerardo Rosati, ⁴ Daviele Santini, ⁴
Doublet/triplet vs. single agent-CT	0.70	0.56–0.89	.004	0.73	0.57–0.93	.012	0.69	0.54–0.88	.003	0.72	0.57–0.93	.010	RICCARDO GIAMPIER, ¹⁷ SAMANTHA DI DONATO, ¹ GIANLUCA TOMASELLO, ¹ NICOLA SLIVESTRIS, ¹⁶ FILIPPO PIETRANTONIO, ¹ FRANCESCA BATTAGLIN, ¹⁷⁷ ANITONIO AVALLONE, ¹⁷ MARIO SCANTOZZ, ⁰ EUFEMA STITANIA LUTIRIO, ¹⁹ DAVIDE MELISI, ¹⁹ LORENZO AVITONIZZO, ²⁷ ANTONIO PIELEGRINO, ⁵ LAURA FRIRANI, ²⁸ ROBERTO BOIDONARO, ¹⁰ CATERINA VIVILOJI, ¹⁷ LORENZO GERINATAINA, ¹⁹ SILVIA BOZZAELLI, ⁴⁰ ROBERTO FILIPPI, ⁴⁰ DOMENTO RILANIL ⁴¹ , MARCO RISCANO, ¹⁰ GERINGER ⁴¹
PFS in first-line													
\geq 6.9 months vs. <6.9 months	0.70	0.56–0.89	.003	0.65	0.51–0.82	<.0001	0.74	0.58–0.95	.017	0.71	0.55–0.92	.008	868 pts with mGC
PFS in second-line													300 treated with a third-
\geq 3.5 months vs. <3.5 months	0.64	0.51–0.81	<.0001	0.57	0.44–0.73	<.0001	0.64	0.50–0.82	<.0001	0.59	0.46–0.77	<.0001	
Age													
\geq 70 years vs. <70 years	0.83	0.64–1.07	.149	0.82	0.63-1.06	.126	-	—	_	-	_	_	
													Univariable analysis Mult

 RESEARCH ARTICLE Treatment patterns and outcomes in patients with metastatic gastric cancer receiving third- line chemotherapy: A population-based outcomes study In SII Chol ^{1*} . Minong Chol ^{5*} , Ju Hyun Lee ² , Jee Hyun Kim ² , Koung Jin Suh ² , Ji Yun Lee ² , Beodeu Kana ² , Jewon Kim ² , Se-Hyun Kim ² , Jin Won Kim ² , Song-Ok Lee ² , Yu Jung Kim ² , So-Mee Ban ² , Jong Sock Lee ² , Keun-Wook Lee ²

1871 pts with mGC229 treated with a third-line CT

		Univariable analysis			Multivariable analysis	
	N	Overall survival (months; median)	Р	Hazard ratio	95% confidence interval	P
Sex			0.676			0.873
Male	159	4.3	-	1.00	-	-
Female	70	4.6	-	0.98	0.73-1.31	-
Age (year)			0.875			
< 70	206	4.3	-	1.00	-	-
≥ 70	23	4.5	-	1.07	0.67-1.71	-
Duration from first-line to third-line chemotherapy			< 0.001			< 0.001
< 9.5 months (median)	111	3.3	-	1.00	-	-
\geq 9.5 months (median)	118	5.3	-	0.53	0.40-0.70	-
Chemotherapy regimens			0.985			0.961
FOLFOX	33	4.3	-	1.00	-	-
Taxane-based therapy	67	4.6	-	1.04	0.67-1.62	0.863
Irinotecan-based therapy	98	4.2	-	0.98	0.65-1.47	0.909
Others	31	4.7	-	0.92	0.55-1.55	0.762

Biological features: a key question for immunotherapy *Data from KEYNOTE-062*

How to select pts for later line treatments? Biological features: for MSI-H tumors CT may not be effective

Pietrantonio F, JCO 2019; Janjigian YY, Cancer Discovery 2018

Gastric cancer immune environment

MSI high

CDKN2A silencing PIK3CA mut. EBV positive

EBV	Rare in metastatic patients
• EBV-CIMP	PD-L1:
• <i>PIK3CA</i> mutation	tumour ++ TILs +++
• <i>PD-L1/2</i> overexpression	High IFNγ signature
MSI	Rare in metastatic patients
• Hypermutation	PD-L1:
• Gastric-CIMP	tumour ++ TILs ++
• <i>MLH1</i> silencing	High IFNγ signature
CIN • ERBB2 amplification • VEGFA amplification • TP53 mutation	Copy number changes: Low immune score Low IFNγ signature
Subtype Tumour purity TP53 mut. SCNA high Diffuse MLH1 silencing	CIN Copy number alterations associated with low immune gene expression Amplification associated with

Amplification associated with immune ignorance: VEGFA, ERB-B2

Can we turn cold tumors into hot tumors? Anti-PD1 and anti-angiogenic inhibitors

Ramucirumab induces CD8+ T-cell infiltration and decreases Treg cells

Datta M, ASCO 2019; Tada T, J Immunother Cancer 2018

Can we turn cold tumors into hot tumors? Anti-PD1 and anti-angiogenic inhibitors

PD-1 blockade may facilitate the proliferation of highly suppressive PD-1+ eTreg cells in HPDs

Kamada T, PNAS 2019

Can we turn cold tumors into hot tumors? Anti-PD1 and anti-angiogenic inhibitors

Can we turn cold tumors into hot tumors? Anti-PD1 and anti-HER2 inhibitors

Stratification: PD-L1 status, Region (Asia vs. US vs. ROW), and chemotherapy regimen Cisplatin + 5-FU or CapeOx or SOX

Primary enpoint: Dual endpoint PFS and OS *Secondary enpoint:* ORR, Biomarker analysis

Memorial Sloan Kettering Cancer Center

Metastatic setting treatment Sequential treatment improves outcome

Biomarker-driven therapy for mGC PS 0/1 pts

A new perspective

"A Journey of a Thousand Miles Begins with a Single Step"

Lau Tzu, 6th century BC

Thank you for your attention