JOXI GASTRO JournalClub L'importanza della ricerca in Oncologia

10-11 OTTOBRE 2019 - ROMA

VOI Donna Camilla Savelli Hotel - Via Garibaldi, 27

Dual targeting of histone methyltransferase G9a and DNMT1 in Gastric Cancer

Giulia Rovesti, MD Modena Cancer Center University Hospital of Modena

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA

Azienda Ospedaliero - Universitaria di Modena

OUTLINE

BACKGROUND

- Epigenetics
- Epigenetics in cancer
- Focus on G9a and DNMT1
- Dual targeting of G9a and DNMT1 in HCC e CCA
- Epigenetics and Gastric Cancer

RESEARCH PROJECT

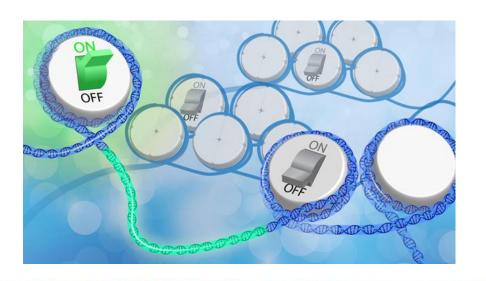
Epigenetics

from transgenerational inheritance to disease

Choices you change your -and those of your kids those of your

make can

genes, and

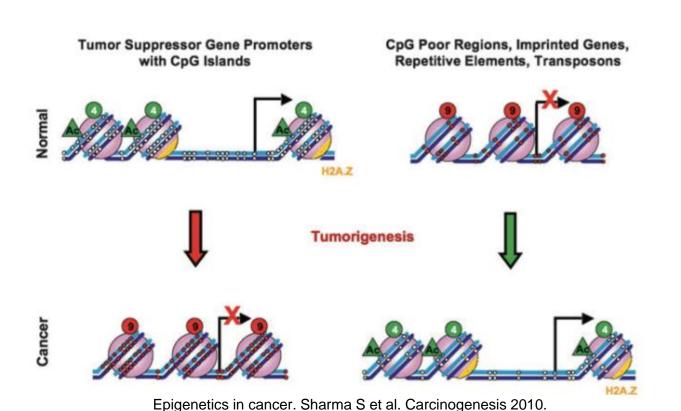

kids

Time cover, 18th January 2010

<u>Initial definition</u>: "The casual interactions between genes and their products, which bring the phenotype into being" (C.H. Waddington, 1939)

<u>Current definition</u>: "Heritable changes in gene expression that occur independent of changes in the primary DNA sequence"

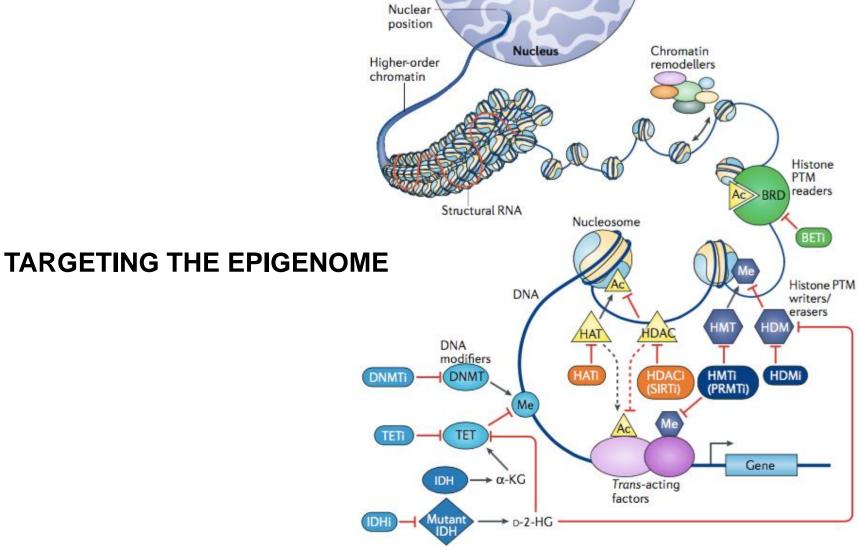
Epigenetics in cancer. Estellar NEJM 2008.



Epigenetics and cancer – 1/3

EPIGENETIC MECHANISMS:

- DNA methylation (DNMT1, DNMT3A, DNMT3B)
- Histone (H2A, H2B, H3, H4) modifications: methylation (HMT) and acetylation
- Non coding RNAs (miRNAs)



EPIGENOME CHANGES IN CANCER:

- 1. Genome-wide hypomethylation
- 2. Site-specific (TSG) CpG island promoter hypermethylation

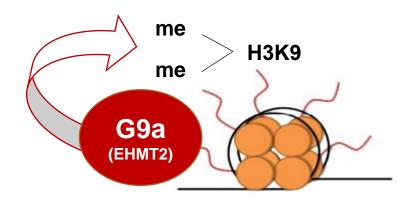
Epigenetics and cancer – 2/3

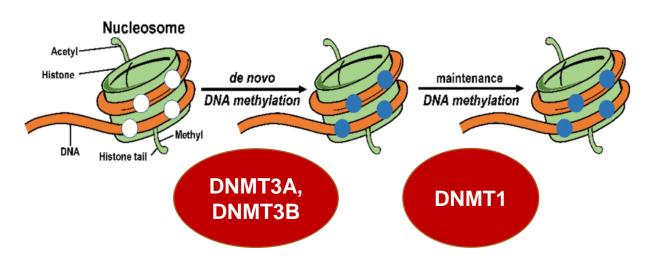
Combining epigenetic drugs with other therapies for solid tumours – past lessons and future promise. Morel D et al. Nature Reviews Sept 2019.

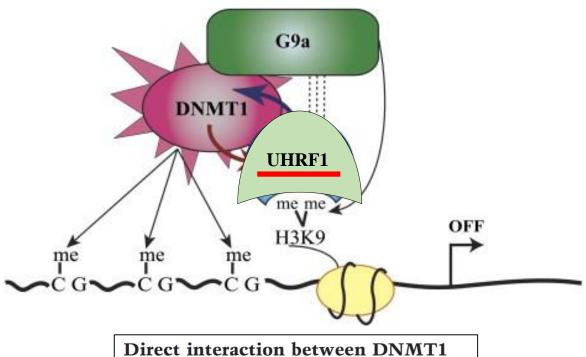
Epigenetics and cancer – 3/3

Morel D et al. Nature Reviews Sept 2019.

EPI-DRUGS


Drugs	classification	Approved Year	Indicated disease	ORR
Azacytidine ²⁰	DNMT inhibitor	2004	MDS	17.9%
Vorinostat ³²	HDAC inhibitor	2006	CTCL	30%
Decitabine ³⁵	DNMT inhibitor	2006	MDS	42%~54%
Romidepesin ³⁴	HDAC inhibitor	2009	TCL	34%
Ruxolitinib ³⁶	JAK1/2 inhibitor	2011	Myelofibrosis	30%
Belinostat ³³	HDAC inhibitor	2015	PTCL	25.8%
Panobinostat ²⁵	HDAC inhibitor	2015	ММ	NA


Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Li J et al. Sci Rep 2017



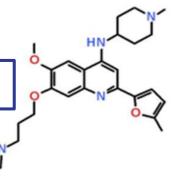
Focus on G9a and DNMT1

Estève et al. Genes Dev. 2006.

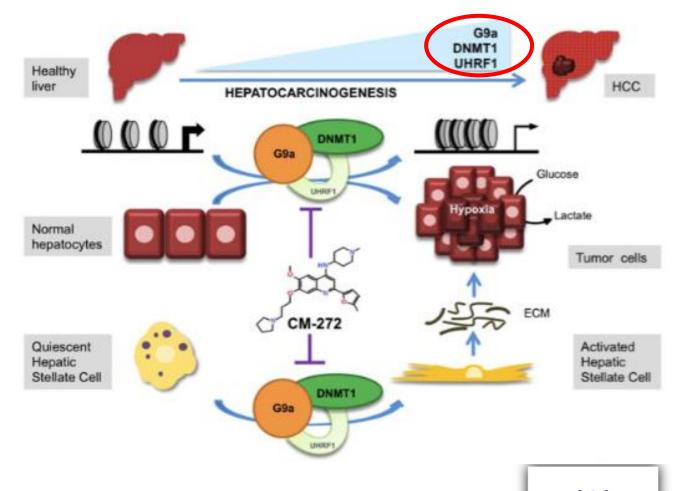
methylation during replication

and G9a coordinates DNA and histone

HEPATOLOGY


HEPATOLOGY, VOL. 69, NO. 2, 2019

Dual Targeting of Histone Methyltransferase G9a and DNA-Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma


Marina Bárcena-Varela, ¹ Stefano Caruso, ² Susana Llerena, ^{3,4} Gloria Álvarez-Sola, ^{1,4} Iker Uriarte, ^{1,4} M. Ujue Latasa, ¹
Raquel Urtasun, ¹ Sandra Rebouissou, ² Laura Alvarez, ¹ Maddalen Jimenez, ¹ Eva Santamaría, ^{4,7} Carlos Rodriguez-Ortigosa, ^{1,4,7}
Giuseppe Mazza, ⁵ Krista Rombouts, ⁵ Edurne San José-Eneriz, ^{6,7} Obdulia Rabal, ⁸ Xabier Agirre, ^{6,7} Maria Iraburu, ⁹
Alvaro Santos-Laso, ^{9,10} Jesus M. Banales, ^{4,9,10} Jessica Zucman-Rossi D, ² Felipe Prósper, ^{6,7} Julen Oyarzabal, ⁸ Carmen Berasain, ^{1,4,7}
Matías A. Ávila, ^{1,4,7} and Maite G. Fernández-Barrena ^{1,4,7}

- First-in-class dual and reversible inhibitor targeting G9a & DNMT1.
- Substrate competitive (H3K9 and DNA).

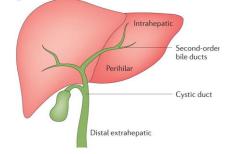
Lead compound CM-272

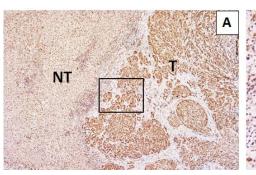
Dual targeting of G9a and DNMT1 in HCC

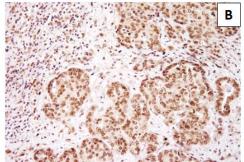
Dual targeting of G9a and DNMT1

in CCA

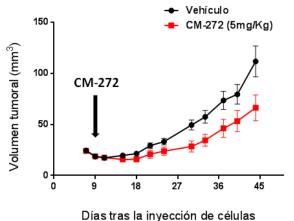
PS-043-Dual targeting of G9a and DNM-methyltransferase-1 for the treatment of experimental cholangiocarcinoma


Leticia Colyn, Gloria Álvarez-Sola, Maria U Latasa, Iker Uriarte, Marina Bárcena-Varela, Maria Arechederra, Maddalen Jimenez, Sergio Morini, Simone Carotti, Julen Oyarzabal, Felipe Prosper, Matteo Canale, Andrea Casadei Gardini, Maria Iraburu Elizalde, Jesus Urman, Chaobo Chen, Francisco Javier Cubero, Leonard J Nelson, Bruno Sangro, María Luz Martínez-Chantar, Jesús María Banales, Jose Marin, Carmen Berasain, Maite G Fernandez-Barrena, Matías A Avila


Expression levels of epigenetic modifiers G9a, DNMT1 and UHRF1 significantly increased in tumor tissue


Synergistic antiproliferative effect over CCA cells by simultaneous inhibition of G9a and DNMT1.

CM-272


- Strong antiproliferative activity on different CCA cell lines
- Synergistic effect with different chemotherapeutics in the inhibition of CCA cells proliferation: Cisplatin, Mcl-1 Inhibitor and ErbB Inhibitors.
- In vivo potent inhibition of CCA growth

G9a expression in iCCA (T= tumoral tissue, NT= non tumoral tissue)

Epigenetics and Gastric Cancer 1/5

Oncogene (2009) 28, 184-194

© 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 \$32.00

www.nature.com/onc

ORIGINAL ARTICLE

Hypoxic silencing of tumor suppressor *RUNX3* by histone modification in gastric cancer cells

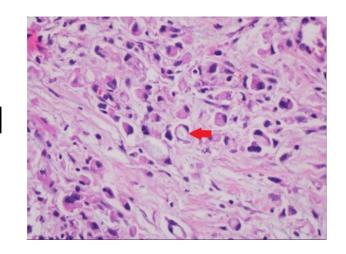
SH Lee^{1,3}, J Kim^{2,3}, W-H Kim² and YM Lee¹

Hypoxia $\rightarrow \uparrow$ G9a (HMT) $\rightarrow \uparrow$ H3K9me $\rightarrow \downarrow$ RUNX3 (TSG)

Cancer Res. 2005 Jun 1;65(11):4809-16.

Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis.

Wei D¹, Gong W, Oh SC, Li Q, Kim WD, Wang L, Le X, Yao J, Wu TT, Huang S, Xie K.


Epigenetics and Gastric Cancer 2/5

Mol Med Rep. 2013 Sep;8(3):942-8. doi: 10.3892/mmr.2013.1566. Epub 2013 Jul 2.

Expression of DNMTs and genomic DNA methylation in gastric signet ring cell carcinoma.

He M1, Fan J, Jiang R, Tang WX, Wang ZW.

↑ ↑ DNMT1 in SRC tissue compared with matched mucosal tissue.

Positive expression of DNMT1 \longleftrightarrow N+ and late TNM stages of SRC

Epigenetics and Gastric Cancer 3/5

The FASEB Journal • Research Communication

Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis

Lin Zhou, 1,2 Xiaodi Zhao, 1 Yanan Han, 1 Yuanyuan Lu, 1 Yulong Shang, Changhao Liu, Ting Li, Zhian Jin, Daiming Fan, 3 and Kaichun Wu 3

UHRF1 expression in GC and adjacent nontumor

. Association of UHRF1 expression in the tumor tissues with demographic and clinicopathologic characteristics in 106 patients with GC

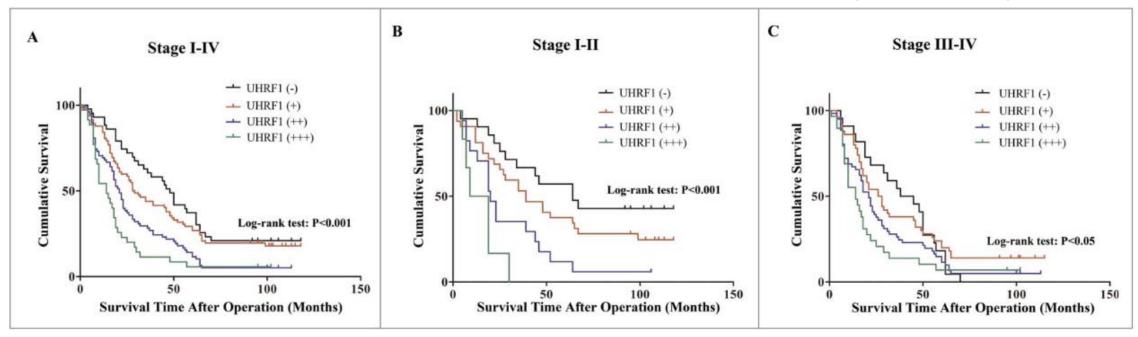
Tissue		Exp	Expression level of UHRF1			
	n	-	+	++	+++	P
Nontumor GC	72 106	37 17	24 31	7 41	4 17	<0.01

tissues

The χ^2 test was used to evaluate the significance of differences between the two groups.

			Expression of $UHRF1(n)$				
Category	n	_	+	++	+++	P	Correlation coefficien
Sex						0.427	0.007^{ns}
Male	67	9	23	24	11		
Female	39	8	8	17	6		
Age (yr)						0.351	$0.135^{\rm ns}$
<60	58	10	19	23	6		
≥60	48	7	12	18	11		
Differentiation						< 0.05	0.286**
Well	8	5	1	2	0		
Moderate	46	7	16	17	6		
Poor	52	5	14	22	11		
Stage						< 0.01	0.334***
I–II	34	11	12	8	3		
III–IV	72	6	19	33	14		
Lymph node metastases						< 0.05	0.322***
0	25	8	10	6	1		
≥1	81	9	21	35	16		
Metastases to other organs						< 0.05	0.249*
Present	7	0	1	2	4		
Absent	99	17	30	39	13		

Epigenetics and Gastric Cancer 4/5


Cancer Biology & Therapy 16:8, 1241-1251; August 2015; © 2015 Taylor & Francis Group, LLC

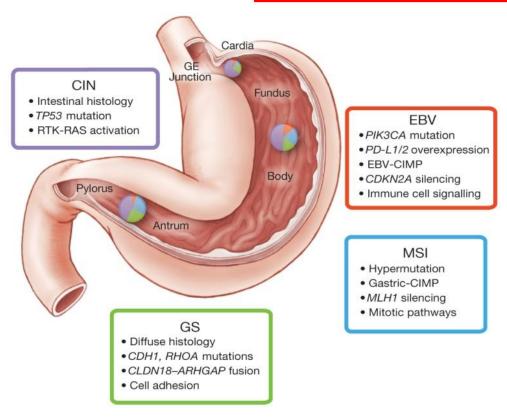
RESEARCH PAPE

UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation

Lin Zhou^{1,#,*}, Yulong Shang^{2,#}, Zhi'an Jin^{3,#}, Wei Zhang^{4,#}, Chunlei Lv¹, Xiaodi Zhao², Yongqiang Liu¹, Naiyi Li¹, and lie Liang^{2,*}

Kaplan–Meier survival curves of GC patients with different level of UHRF1 expression stratified by the TNM stage of the tumor (log-rank test).

Hypermethylation of 7 TSG (CDKN2A, RUNX3, CDX2, DOXO4, PPARG, BRCA1 e PML)



Epigenetics and Gastric Cancer 5/5

nature

Comprehensive molecular characterization of gastric adenocarcinoma

The Cancer Genome Atlas Research Network*

EBV- positive tumours had a **higher prevalence of DNA hypermethylation** than any cancers reported by TCGA

All EBV-positive tumours clustered together and exhibited extreme CIMP (CpG island methylator phenotype)

All EBV-positive tumours assayed displayed *CDKN2A* (*p16INK4A*) promoter hypermethylation, but lacked the *MLH1* hypermethylation

Key features of gastric cancer subtypes

RESEARCH PROJECT

Collection of human Gastric Cancer (GC) samples and clinico-pathological data (Jan 2000 – Feb 2019) → 100 samples

Preparation of tissue samples for histological examination

Inclusion Criteria

Patients with histological diagnosis of resectable or advanced gastric cancer

Availability of surgical (or bioptic) specimens for the analysis

No chemo- and/or radiotherapy prior to surgery

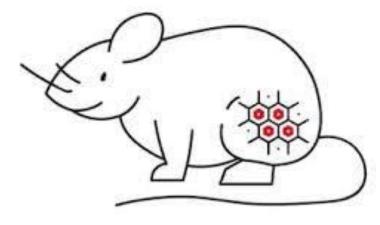
Written informed consent

Exclusion Criteria

Patients with uncertain histological diagnosis of gastric cancer

Chemo- and/or radiotherapy prior to surgery

Refusal of consent


IHC Analysis of G9a, DNMT1 and UHRF1

SUBSEQUENT PHASES

IN VITRO (GC Cell lines)

Evaluation of G9a, DNMT1 and UHRF1 expression

Evaluation of CM-272 effect

Evaluation of potential synergistic effect with other anticancer agents

Evaluation of CM-272 effect

IN VIVO (mouse xenograft models)

Aims

Primary objective:

Expression evaluation of G9a, DNMT1 and UHRF1 in GC patients

- Provide a <u>better characterization of methylation in GC</u>
- Identify <u>potential novel therapeutic targets</u> providing a background for further investigations in order to develop more specific therapeutic strategies (*Epi-drugs*)

Secondary objective:

Correlation of profile expression of G9a, DNMT1 and UHRF1 in GC with clinico-pathological features and survival parameters

Identify possible prognostic and predictive factors

Take-home messages

- Epigenetic mechanisms are emerging as attractive therapeutic target in solid tumors
- Epi-drugs are already being tested
- Given the crosstalk between chromatin marks, **simultaneous targeting** of different epigenetic modifiers **may improve therapeutic efficacy**
- CM-272 as emerged as a promising dual (G9a and DNMT1) targeting agent (HCC, CCA)
- Epigenetic dysregulation plays a crucial role in GC development
- G9a and DNMT1 seems potential epi-target also in the context of GC, but few data are available
- Further investigation are needed

Acknowledgments

Prof. Stefano Cascinu

Dr. Andrea Casadei Gardini

Dr.ssa Giulia Orsi

Dr. Andrea Spallanzani

Dr.ssa Kalliopi Andrikou

CIMA, Pamplona:

Prof. Matías Ávila

