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 ABstrAct     The one-year and median overall survival (mOS) rates of advanced gastroesopha-
geal adenocarcinomas (GEA) are ∼50% and <12 months, respectively. Baseline 

spatial and temporal molecular heterogeneity of targetable alterations may be a cause of failure of 
targeted/immunooncologic therapies. This heterogeneity, coupled with infrequent incidence of some 
biomarkers, has resulted in stalled therapeutic progress. We hypothesized that a personalized treat-
ment strategy, applied at fi rst diagnosis then serially over up to three treatment lines using monoclonal 
antibodies combined with optimally sequenced chemotherapy, could contend with these hurdles. This 
was tested using a novel clinical expansion-platform type II design with a survival primary endpoint. 
Of 68 patients by intention-to-treat, the one-year survival rate was 66% and mOS was 15.7 months, 
meeting the primary effi cacy endpoint (one-sided  P  = 0.0024). First-line response rate (74%), disease 
control rate (99%), and median progression-free survival (8.2 months) were superior to historical con-
trols. The PANGEA strategy led to improved outcomes warranting a larger randomized study.  

  SIGnIFICAnCE:   This study highlights excellent outcomes achieved by individually optimizing chemo-
therapy, biomarker profi ling, and matching of targeted therapies at baseline and over time for GEA. 
Testing a predefi ned treatment strategy resulted in improved outcomes versus historical controls. 
Therapeutic resistance observed in correlative analyses suggests that dual targeted inhibition may be 
benefi cial.         

   note:  Supplementary data for this article are available at Cancer Discovery 
Online (http://cancerdiscovery.aacrjournals.org/).  
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Introduction
Gastroesophageal adenocarcinoma (GEA) is a significant 

global health problem (1). Despite palliative chemotherapy, 
median overall survival (mOS) of advanced disease is less 
than one year (2). The anti-HER2 antibody trastuzumab 
demonstrated improved mOS of 14 to 16 months for first-
line HER2-amplified and -overexpressed GEA, yet the one-
year survival rate was still less than 65% (3). Next-generation 
sequencing (NGS) identified interpatient molecular hetero-
geneity with a number of often rare and/or frequently co- 
occurring biological subgroups within GEA, including tumors 
harboring amplifications of key receptor tyrosine kinases 
(RTK) other than HER2, including EGFR, MET, and FGFR2, 
and also downstream MAPK/PIK3CA pathway activations 
(4). Higher PD-L1 expression levels and high microsatellite 
instability (MSI-high) were associated with enriched thera-
peutic benefit from anti–PD-1 therapies in small series (5). 
However, numerous targeted therapies and immunotherapies 
failed in the first and later treatment lines for GEA, including 
but not limited to anti-HER2 therapy beyond first progres-
sion, anti-EGFR, anti-MET, antiangiogenesis, and anti–PD-1/
PD-L1 therapies (6–15). A potential contributing explanation 
for these failed attempts included molecular heterogeneity 
(16), not only between patients (4) but also spatially within 
patients at baseline (17), and over time after generation of 
therapeutic resistance (18).

Novel clinical trial designs attempting to address molecular 
heterogeneity have been described (16, 19) and are often referred 
to as basket, umbrella, or expansion-platform studies, the lat-
ter because they expand on previous preclinical and clinical 
evidence supportive of specific biomarker–treatment pairings. 
Most of these studies to date have been type I expansion stud-
ies, those focused on molecular heterogeneity between patients, 
whereby after identifying patients with a given genomic altera-
tion, classic study designs and statistical methods are then 
applied to each substudy (16). The general advantage of such 
type I studies, whether histology-dependent (type Ia) or agnostic 
(type Ib), is the coordinated molecular profiling and screening 
such that many parallel studies can then be simultaneously con-
ducted downstream for various molecular subgroups. Histology- 
agnostic studies have the added benefit of pooling across tumor 
types to enhance accrual of low-incidence genomic alterations. 
Disadvantages, however, include persistent difficulty in enroll-
ing adequate numbers of patients to low-incidence groups (20), 
heterogeneous treatment standards making earlier-line combi-
nation studies challenging, and also the added prognostic and 
predictive heterogeneity by including differing tumor histolo-
gies. Furthermore, type I expansion studies have generally been 
conducted in later treatment lines as monotherapy, making 
them less likely to be effective. Importantly, type I expansion 
studies have largely not addressed baseline spatial and temporal 
intrapatient molecular heterogeneity. Thus, no clinical trials 
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have systematically and simultaneously tackled molecular het-
erogeneity in totality—not only between patients but also within 
patients at first baseline diagnosis as well as after development 
of treatment resistance. A novel approach, termed a type II 
expansion-platform study, was described to prospectively test 
a personalized treatment strategy incorporating individualized 
treatments for each patient at baseline and over sequential lines 
of therapy (16, 21, 22).

Generally, therapeutic monoclonal antibodies such as tras-
tuzumab are easily combined and work synergistically with 
cytotoxic chemotherapy with low risk of off-target effects and 
consequently less added toxicity compared with other targeted 
agents such as small-molecule inhibitors (3, 23, 24). In addition 
to ligand-blocking activity coupled with receptor binding, inter-
nalization, and degradation by monoclonal antibodies, another 
important putative mechanism of action includes antibody-
dependent cell-mediated cytotoxicity (ADCC), recruiting innate 
immune effector cells to the tumor microenvironment (25, 26).

We sought to optimize survival using sequential doublet 
cytotoxic therapy in combination with an individually matched 
monoclonal antibody at baseline diagnosis, then again serially 

over up to three lines of therapy in a phase II expansion-platform 
type II clinical trial of personalized antibodies for gastroesopha-
geal adenocarcinoma (PANGEA; refs. 16, 22, 27, 28). To preemp-
tively address the possibility of multiple therapeutic options due 
to concurrent molecular alterations in a given patient’s sample, 
a predefined prioritized biomarker and treatment assignment 
algorithm was applied at each therapeutic line. We hypothesized 
that this personalized treatment strategy, entailing eight biologi-
cal subgroups with six matched monoclonal antibodies, could 
contend with the formidable hurdles posed by interpatient and 
intrapatient molecular heterogeneity, leading to improved out-
comes compared with historical controls.

Results
Patient Characteristics and Disposition

Over four years between June 2015 and May 2019, 80 eli-
gible patients were enrolled and included in the analysis at 
the time of the final data lock, August 20, 2020, of whom 68 
were included in the intention-to-treat (ITT) analysis (Fig. 1  
and Table 1). Poor prognostic features including Eastern 

Figure 1.  CONSORT diagram. ITT, intention to treat; mITT, modified ITT; GI, gastrointestinal; CNS, central nervous system; ECOG, Eastern Cooperative 
Group; IO, immuno-oncology; MSI-H, microsatellite instability high; CPS, combined positivity score; EBV+, Epstein–Barr virus–positive; TMB, tumor 
mutation burden; mt/mB, mutations per megabase. *, The most common reason for consent withdrawal was patient decision to enroll in other competing 
immunotherapy-based first-line studies. **, Patients without availability of monoclonal antibody due to inability to secure collaborative agreement in 
the MET and FGFR2 groups were treated, per protocol, with standard therapy and followed for outcome. Patients able to get off-label matched targeted 
therapy (two patients harboring MET-amplified tumors) were evaluated in a preplanned mITT analysis.

110 patients assessed for eligibility

30 excluded
•  16 withdrew consent*
•  14 ineligible
        •  3 severe GI bleed
        •  3 CNS disease
        •  2 no primary tumor biopsy confirmation
        •  1 locally advanced nonmetastatic
        •  1 bowel obstruction
        •  1 elevated creatinine
        •  1 second malignancy
        •  1 ECOG performance status 3
        •  1 grade 3 diabetic neuropathy  

80 enrolled and treated on study 

12 excluded from ITT and toxicity assessment:**
•  3 FGFR2 amplification
•  9 MET amplification    

68 evaluable for ITT & toxicity analysis

70 evaluable for modified ITT analysis

10 excluded from
modified ITT analysis
•  3 FGFR2 amplification
•  7 MET amplification     

68 evaluable for ITT & toxicity analysis
•  5 IO
             •  1 MSI-H
             •  4 PD-L1 CPS ≥ 10
             •  0 EBV+
             •  0 TMB-H ≥ 15 mt/mB
•  16 HER2 amplification
•  8   EGFR amplification
•  1   FGFR2 amplification
•  20 MAPK/PIK3CA aberrant
•  9  EGFR overexpressed
•  9  all negative

Able to receive non-protocol targeted agents
•  1 MET amplification (crizotinib, cabozantinib)
•  1 MET amplification (crizotinib)    

No targeted agents
•  3 FGFR2 amplification
•  7 MET amplification    
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 table 1.      Baseline clinicopathologic characteristics of all patients enrolled and by ITT   

Characteristic All patients enrolled ( n  = 80) ITT-PTS ( n  = 68) Non-ITT ( n  = 12)
Median age (range) 61 (28–81) 61 (28–81) 61 (39–77)

Gender
 Male 64 (80%) 53 (78%) 11 (92%)
 Female 16 (20%) 15 (22%) 1 (8%)

Primary tumor

 Non-cardia stomach 30 (38%) 18 (26%) 8 (67%)
 EGJ (Siewert I/II/III) 50 (63%) 50 (74%) 4 (33%)

Anatomic location
 Esophagus 34 (43%) 32 (47%) 2 (17%)
 GEJ 24 (30%) 18 (26%) 6 (50%)
 Cardia 4 (5%) 3 (4%) 1 (8%)
 Body 7 (8.8%) 7 (10%) —
 Antrum 7 (8.8%) 5 (7%) 2 (17%)
 Pylorus 1 (1%) 1 (1%) —
 Linitis Plastica 3 (4%) 2 (3%) 1 (8%)

Signet ring cells
 Present 21 (26%) 20 (29%) 1 (8%)
 Absent 59 (74%) 48 (71%) 11 (92%)

Tumor differentiation
 G1 Well 3 (4%) 3 (4%) —
 G2 Moderately 26 (33%) 25 (37%) 1 (8%)
 G3 Poorly 51 (64%) 40 (59%) 11 (92%)

Baseline metastasis  a  
 LN 50 (63%) 41 (60%) 9 (75%)
 Peritoneum 30 (38%) 26 (38%) 4 (33%)
 Liver 29 (36%) 25 (37%) 4 (33%)
 Lung 6 (8%) 5 (7%) 1 (8%)
 Bone 4 (5%) 3 (4%) 1 (8%)
 Adrenal gland 3 (4%) 3 (4%) —
 Other 1 (1%) 1 (1%) —

Prior primary surgery
 Yes 8 (10%) 8 (11.8%) —
 No 72 (90%) 60 (88.2%) 12 (100%)
Race
 Hispanic: 4 (5%) 4 (6%) —
 Non-Hispanic 76 (95%) 64 (94%) 12 (100%)
 Asian 2 (2.5%) 2 (3%) —
 Black 7 (8.8%) 7 (10%) —
 White 68 (85%) 57 (84%) 11 (92%)
 More than one race 3 (3.8%) 2 (3%) 1 (8%)

Performance status
 0 40 (50%) 35 (51%) 5 (42%)
 1 33 (41%) 28 (41%) 5 (25%)
 2 7 (9%) 5 (7%) 2 (17%)

   Abbreviations: ITT-PTS, intention to treat by personalized treatment strategy for patients having monoclonal antibodies readily available; non-ITT, 
those patients in biomarker groups 4 (FGFR2) and 5 (MET) who did not have available monoclonal antibodies and therefore treated with standard 
therapy only and followed for outcomes; EGJ, esophagogastric junction including Siewert type I–III; GEJ, gastroesophageal junction Siewert type II; 
G1/G2/G3, tumor grades 1/2/3.  
a Percentages add to >100% due to concurrent sites of metastatic disease.   
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Cooperative Oncology Group (ECOG) performance status of 
2, signet ring cells, and peritoneal disease comprised 9%, 26%, 
and 38%, respectively, of all patients enrolled. The neutrophil-to-
lymphocyte ratio (NLR) was high (poor prognosis) in 69% of the 
ITT patients. Biomarker profi les were unknown at the time of 
enrollment and patient tumors were evaluated by the predefi ned 
biomarker assessment and treatment assignment algorithm (see 
Methods;  Table 2 ). The median follow-up time among 13 surviv-
ing patients (12, 17.6% of ITT) at the data lock was 27.6 months 
(interquartile range 24.8–40.5; range, 16.6–57.6). In the ITT 
group, all 68 (100%) patients received fi rst-line therapy, 53 of 61 
(87%) had proceeded to receive second-line therapy, and 25 of 
60 (42%) proceeded to receive third-line therapy, with 7, none, 
and 2 patients still on each line, respectively (Supplementary 
Table S1). Following PANGEA failure, 8 patients (12%) received 
fourth-line therapy with 3 patients remaining alive on this line, 
and no fi fth-line or later therapies were received. The number of 
patients with a successful biopsy and profi ling as well as num-
bers of patients receiving cytotoxic therapy and targeted therapy 
by line of therapy are shown in Supplementary Tables S2 and S3. 
Of 68 ITT patients, per treating physician’s choice, 28 (41.2%) 
received mFOLFOX7 (no 5FU bolus) at cycle 1, and the remain-
der received mFOLFOX6 with 5FU bolus (range, 1–9 cycles 
with bolus, median 2 cycles with bolus; Supplementary Fig. 
S1). Through the duration of their treatment, 14 of 68 (20.6%) 
patients received palliative radiotherapy to the primary tumor as 
allowed per protocol, all of which were proximal esophagogas-
tric junction tumors (14 of 50, 28%; Supplementary Fig. S1). 
Notably, 4 of 68 (5.9%) patients developed central nervous 
system (CNS) disease, of whom 2 had  HER2  amplifi cation, 
1 had  EGFR  amplifi cation, and 1 had coamplifi cation of  HER2  
and  EGFR . Therefore, 3 of 16 (18.8%)  HER2 -amplifi ed tumors 
and 2 of 8 (25%)  EGFR -amplifi ed tumors developed CNS dis-
ease (Supplementary Fig. S1).     

  Effi cacy 

 The study met its primary effi cacy endpoint with 45 
(66%; 95% CI, 54%–76%) of 68 ITT patients alive at one year 
(one-sided  P  = 0.0024 for test of null hypothesis that the 
survival rate at one year is 50%;  Table 3  ). The mOS was 15.7 
months (95% CI, 13.4–17.7) and median time to treatment 
failure (TTF; PFS 1  + PFS 2  + PFS 3 ) was 13.6 months (95% 
CI, 11.3–15.8) in the ITT group ( Fig. 2A  and  B ), compared 
with mOS of 9.0 months (95% CI, 4.6–20.3) and median 
TTF of 7.9 months (95% CI, 3.9–18.8) in the non-ITT group 
( P  = 0.050 and  P  = 0.084, respectively). The two-, three-, 
and fi ve-year survival estimates for the ITT population were 
29%, 14%, and 11%, respectively. Among the ITT patients, 
mOS was 25.8 months (95% CI, 14.1–30.1) in higher-prior-
ity biological groups 1–4 (group 5 excluded because none 
treated with ITT), compared with 13.9 months (95% CI, 
11.2–16.7) in lower-priority groups 6–8 ( P  = 0.002,  Fig. 2C ; 
see Methods on prioritization;  Table 2 ). Among the ITT 
patients, mOS was 25.8 months (95% CI, 10.8–43.4) in the 
HER2-positive group 2, compared with 14.9 months (95% 
CI 11.6–16.9) in all the remaining HER2-negative groups 
among the ITT population ( P  = 0.011,  Fig. 2D ). In the modi-
fi ed ITT (mITT) analysis, the mOS was 16.3 months (95% CI, 
13.8–17.9) in the mITT group compared with mOS of 8.8 
months (95% CI, 4.1–11.4) in the non-mITT group ( P  = 0.009; 
 Fig. 2E ). Among the mITT patients, mOS was 21.2 months 
(95% CI, 14.1–30.1) in higher-priority groups 1–5, compared 
with 13.9 months (95% CI 11.2–16.7) in lower-priority groups 
6–8 ( P  = 0.002,  Fig. 2F ). In the ITT group, the median PFS 1  was 
8.2 months (95% CI, 7.3–9.6) compared with 6.7 months (95% 
CI, 2.9–10.6) in the non-ITT group ( P  = 0.17,  Fig. 3A ). Among 
the ITT population, 28/61 (46%) changed to second line upon 
progressive disease on maintenance 5FU plus antibody due 

 table 2.      Biomarker prioritization and treatment assignment algorithm  

Biomarker group and description  a  Treatment arm Antibody therapy
1. IO  b  Anti–PD-1 Nivolumab
2. HER2  amplifi ed  c  Anti-HER2 Trastuzumab
3. EGFR  amplifi ed  c  Anti-EGFR ABT-806
4. FGFR2  amplifi ed  c  Anti-FGFR2 Bemarituzumab  d  
5. MET  amplifi ed  c  Anti-MET None available  e  
6. MAPK/PIK3CA aberrant Anti-VEGFR2 Ramucirumab
7. EGFR expressing Anti-EGFR ABT-806
8. All negative Anti-VEGFR2 Ramucirumab

   Abbreviation: IO, immuno-oncology, including PD-L1 IHC combined positivity score  > 10, high microsatellite instability, tumor mutation burden  > 15 muta-
tions/megabase, and/or Epstein–Barr virus positive.  
a The biomarker profi le highest on the priority list is prioritized over others if more than one biomarker is present in a given sample. Metastatic disease 
site is prioritized over primary tumor site if treatment assignment discordance is observed. If a tumor sample does not fi t into any of the seven prior-
itized groups, then it is assigned to the “all-negative” relegation group 8. If the molecular testing is “quantity insuffi cient,” then the tumor is assigned to 
the “all-negative” relegation group 8 (see the text for more details).  
b Group 1 IO is prioritized over group 2  HER2  amplifi cation only in second line or higher. Group 2  HER2  amplifi cation is prioritized over IO only in fi rst line.  
   c If RTK genes are coamplifi ed in a given sample, the gene with the highest copy number is prioritized.  
   d One patient of four with  FGFR2- amplifi ed tumors in fi rst line were able to get access to bemarituzumab plus mFOLFOX6 and treated per protocol and in-
cluded in ITT. One patient of one who evolved to acquire  FGFR2  amplifi cation after fi rst-line therapy received bemarituzumab in second line, and included in ITT.  
   e Of nine patients enrolled with  MET  amplifi cation, two were able to receive crizotinib (and one of these two patients also received cabozantinib after 
crizotinib-induced pneumonitis) in later lines, and included in a preplanned mITT analysis.   
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 table 3.      Effi cacy outcomes in the PAnGEA phase II trial by ITT  

ITT ( n  = 68) Non-ITT ( n  = 12)
 OS   a  
 Events 56 (82%) 11 (92%)
 1-year survival rate  b  66% 33.3%
 2-year survival rate 29% 8%
 Median survival, months (95% CI) 15.7 (13.4–17.7) 9.0 (4.6–20.3)
Progression-free survival (PFS 1 )  a  
 Events 61 (90%) 11 (92%)
 Median duration, months (95% CI) 8.2 (7.3–9.6) 6.7 (2.9–10.6)
Overall objective response (ORR 1 )
Patients with measureable disease 54 (79%) 10 (83%)
Best overall response
 Complete response 4 (7.4%) 0 (0%)
 Partial response 36 (66.7%) 4 (40%)
 Stable disease 13 (24.1%) 3 (30%)
 Progressive disease 1 (1.9%) 3 (30%)
 Objective response 40/54 (74.1%) 4/10 (40%)
 Disease control (measurable) 53/54 (98.1%) 7/10 (70%)
Patient with nonmeasurable disease 14 (21%) 2 (17%)
 Stable disease 14 (100%) 2 (100%)
 Progressive disease 0 (0%) 0 (0%)
Overall disease control 67/68 (98.5%) 9/12 (75%)

   Abbreviations: ITT, intention to treat; PFS 1 , fi rst-line progression-free survival; ORR 1 , fi rst-line overall objective response rate.  
   a Median follow-up among survivors was 27.6 months (interquartile range, 24.8–40.5; range, 16.6–57.6)  
   b The primary effi cacy endpoint was 1-year survival rate.   

to persistent neuropathy (26/61) or prior oxaliplatin allergic 
reaction (2/61), precluding resumption of oxaliplatin, whereas 
the remaining patients experienced progressive disease while 
receiving FOLFOX plus antibody therapy. Among the ITT 
population having evaluable disease by RECIST1.1, the dis-
ease control rate in fi rst-line (DCR 1 ) was 98.5% (67/68) and 
the fi rst-line objective response rate (ORR 1 ) among the 54 
patients with measurable disease was 74.1% (40/54;  Fig. 3B ; 
Supplementary Fig. S2A). Results of all endpoints by treat-
ment line and biological subgroup, as well as mITT, are sum-
marized in Supplementary Fig. S2B–S2G and Supplementary 
Tables S4 and S5.     

  Biomarker Spatial and Temporal Heterogeneity 
 Among the 80 patients enrolled, the baseline incidence 

of each biomarker generally represented the incidences as 
determined in larger sample sets ( Fig. 4A ; Supplementary 
Table S6; refs.  4, 29, 30 ). However, comparison of the baseline 
primary versus metastatic tumor molecular profi les demon-
strated 28 of 80 (35%) patients having discordant treatment 
assignments based on the biomarker assignment and treat-
ment algorithm. This baseline discordance led to higher 
incidence of some biomarker groups, particularly  FGFR2  and 
 MET  amplifi cations, due to directional (primary to metasta-
sis) acquisition of these aberrations ( Fig. 4A ). The incidence 
of patients assigned to immuno-oncologic (IO) by the meta-
static site using the combined positivity scoring (CPS) ≥10 
cutoff was 5/80 (6.3%, one of which was MSI-high); using a 
lower cutoff of CPS ≥5 would have added 5 more patients 

(10/80 or 13% total). Remarkably, the incidence of patients 
assigned to group 1 IO due to either EBV +  or tumor mutation 
burden (TMB)–high (≥15 mt/MB) was 0% in the 80 patients 
evaluated at baseline, other than 1 patient with an MSI-high 
tumor that was TMB-high (24 mt/MB). Two of 80 patients 
did have TMB-high primary tumors but TMB-low metastatic 
tumors; 1 of these patients was still assigned to group 1 IO 
per the protocol/algorithm because both lesions were very 
high PD-L1-expressing (CPS 100 primary tumor and CPS 
95 metastasis). In 19 of 80 (23.8%) patients, HER2 positivity 
was noted in either the primary tumor and/or the metastatic 
tumor. Of these, 16 (20%) had HER2 positivity and the high-
est gene copy if there were concurrent RTK amplifi cations in 
the metastatic site, and therefore were assigned to the HER2 
group per the protocol/algorithm (Supplementary Table S7). 
Notably,  HER2 -amplifi ed primary tumors were not amplifi ed 
in their paired metastases in 2 patients, whereas  HER2 -non-
amplifi ed primary tumors were amplifi ed in metastases in 2 
other patients, resulting in a net zero change in incidence, 
but a change in treatment for 4 patients. Additionally, 1 
patient had concurrent  EGFR  and  HER2  amplifi cation, with 
a higher  EGFR  copy in both the primary tumor and meta-
static biopsies, leading to concordant assignment to group 3 
 EGFR  amplifi cation per the biomarker assignment algorithm 
( Table 2 ), but against current standard treatment guidelines. 
Therefore, 3 of 17 (17.6%)  HER2 -amplifi ed primary tumors 
were assigned to different groups (2 patients to group 3 
 EGFR  amplifi cation, 1 patient to group 5  MET  amplifi cation), 
and 2 of 63 (3.2%)  HER2 -nonamplifi ed primary tumors were 
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Figure 2.  A, OS in the ITT group (red) versus the non-ITT group (blue). B, The time to PANGEA treatment failure in the ITT group versus the non-ITT group. 
C, OS comparing higher-priority biomarker groups 1–4 (blue) to lower-priority groups 6–8 (red) among the ITT population (no group 5 patient treated with 
ITT). D, The OS comparing the HER2+ group (red) versus the HER2− group (blue) among the ITT population. E, The OS in the modified (mITT) group (red) versus 
the non-mITT group (blue). F, OS comparing higher-priority biomarker groups 1–5 (blue) to lower-priority groups 6–8 (red) among the mITT population.
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assigned to group 2 HER2-amplified based on the algorithm’s 
predefined rules.

Temporal molecular heterogeneity is captured in the swim-
mer plot demonstrating TTF over up to three lines of therapy 
(Fig. 4B; Supplementary Fig. S1). Among mITT patients pro-
gressing on first-line therapy with evaluable tumor samples  
at first progression (PD1), comparison of the first biomarker 
group assignment to the second group assignment demon-
strated a group assignment change in 27 of 55 patients (49%; 
Fig. 4B; Supplementary Tables S2 and S3). Of mITT patients 
progressing on second-line therapy with evaluable tumor 
samples at PD2, comparison of the third group assignment 
to the previous assignment demonstrated a group change in 
13 of 27 (48%) patients. Of 16 patients initially assigned to 
the HER2-amplified group, 3 remained on first-line therapy 
at the data cutoff, and 2 progressed with CNS disease and 
were unable to obtain PD1 biopsies. Of the remaining 11 
initially HER2-amplified patients, 4 (37%) evolved to other 
groups at PD1 (2 to IO group 1, and 2 to MAPK/PIKC3A 
aberrant group 6). Similarly, 4 of 6 (67%) HER2-amplified 
second-line patients evaluable at PD2 evolved to other groups  
(2 to IO group 1, 2 to MAPK/PIKC3A aberrant group 6), for 
a total of 8 (72.7%) evolving at either PD1 or PD2 to HER2-
nonamplified groups. However, all 4 patients evolving to the 
IO group 1 retained HER2 amplification but were prioritized 
per the algorithm rules, leaving 4 of 11 (45.5%) actually hav-
ing HER2-nonamplified tumors. Of these 4 patients convert-
ing to HER2-nonamplified tumors, 1 (25%) had resurgence 
of HER2-amplified disease at PD3. Notably, although only 
5 of 80 (6.25%) patients were assigned to the IO group 

initially, 10 of 65 (15.4%) patients who were exposed to 
any targeted therapy in the mITT group, including the 4 
HER2-amplified ones noted above, evolved to group 1 IO 
in either the second or third line, but only 6 of those 10 
patients received IO therapy on study, because the other  
4 patients had progressive disease and died before being able 
to implement it. Specifically, PD-L1 conversion occurred in 
7 of 27 (26%) RTK-amplified tumors after exposure to RTK 
targeted therapies. In contrast, none of the 10 patients in the 
non-mITT group (all RTK-amplified tumors but not receiv-
ing targeted therapies) changed to IO at later lines. Through 
the study duration over up to three therapy lines, 15 of 70 
(21.4%) patients were assigned to IO at least once, and 11 of 
70 (15.7%) patients were able to receive it.

Among the 14 esophagogastric junction patients requiring 
radiotherapy to the primary tumor for symptomatic dyspha-
gia and/or bleeding, each had systemic disease controlled at 
the time. Of the 9 of these patients on non-IO therapy with 
evaluable NGS testing of the primary tumor just prior to 
radiotherapy, 8 (88.9%) of the sampled tumors had acquired 
new genomic alterations and/or loss of the intended target of 
their assigned biological group.

Safety and Feasibility
There were no diagnostic or treatment-related deaths. Of 

327 biopsies (156 primary tumors; 171 metastatic tumors) 
obtained at baseline and through three lines of therapy, 1 
patient (<1%) was admitted overnight for monitoring due 
to abdominal pain after baseline ultrasound-guided biopsy 
of a peritoneal nodule, then discharged the next day; thus, 
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the diagnostic approach was deemed safe. Of 80 patients 
enrolled, 77 (96%) were successfully assigned by the treatment 
algorithm within two months, meeting this feasibility end-
point. Among 72 patients progressing on first-line therapy, 
60 (83%) had PD1 biopsies successfully [51 of 61 (84%) ITT; 
Supplementary Table S2]. Of 60 patients actually proceeding 
to receive second-line therapy, 55 (92%) obtained PD1 biop-
sies successfully [49 of 53 (92%) ITT], meeting this feasibility 
endpoint. Of 28 patients proceeding to third-line therapy, 
24 (86%) had PD2 biopsies successfully [21 of 25 (84%) ITT].

Grade 3 or higher treatment-related adverse events 
through all three treatment lines are reported in Table 4,  
with the most common being cytopenias, fatigue, nausea, 
and vomiting, each attributed to the cytotoxic therapy 
and not the monoclonal antibodies. The most common 
dose modification was stopping the 5FU bolus. Grade 3 
treatment-related adverse events attributed solely to mono-
clonal antibodies were reported in 2 patients, including 
1 patient with ramucirumab causing nephrotic syndrome 

and 1 patient on bemarituzumab causing corneal keratitis, 
reported elsewhere (31).

Discussion
In this patient-centric phase II study for newly diagnosed 

advanced GEA, a novel study design was implemented to test 
an individualized treatment strategy using monoclonal anti-
bodies matched to tumor molecular profiles in combination  
with chemotherapy for up to three lines of sequential treat-
ment (16, 21, 22, 27, 28). The study reached its primary end-
point, with 45 of 68 patients (66%) alive at 12 months, per 
ITT, exceeding the 50% historical control rate. The mOS of 
15.7 months, the DCR1 of 98.5%, and the ORR1 of 74.1% are 
each substantially numerically higher than would be expected 
if treating with standard first-line therapy. A better outcome 
than expected was observed even for the HER2-positive sub-
group, with a median OS of 25.8 months compared with 
HER2-positive historical controls of 14 to 16 months (3, 32). 

Figure 3.  A, The first-line progression-free survival (PFS1) in the ITT group (red) versus the non-ITT group (blue). B, Rainbow waterfall plot demonstrat-
ing objective response rate (ORR1, 74%) and disease control rate (DCR1, 99%) by molecular group to first-line cytotoxic therapy plus matched monoclonal 
antibody among patients within the ITT population who had baseline measurable disease (N = 54/68). Inset, waterfall plot for ORR1 ITT treated per protocol.
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The biomarker testing strategy was deemed feasible and safe, 
as previously described (33), including in the many patients 
treated with ramucirumab without any breaks in biweekly dos-
ing for biopsies. The high rate of post-treatment biopsies on 
this study is likely due to patient willingness given the direct 
impact on their own next-line treatment. Also, treatment-
related toxicities were similar to and even better than those 
reported for standard cytotoxic therapy, where almost half 
of patients received mFOLFOX7 and all received mFOLFIRI  
(no 5FU bolus in either regimen). Given the exceptional effi-
cacy observed in this study, this suggests that the utility of 5FU 
bolus is limited, and it is our routine practice not to include it 

in most patients. Moreover, the use of novel combinations of 
the three chemotherapy backbones and the six monoclonal 
antibodies in the study resulted in no new safety concerns. It is 
also the first study, to our knowledge, to study anti–PD-1 ther-
apy beyond progression in persistently PD-L1–positive (CPS > 
10) tumors. The results suggest that the addition of a matched 
targeted monoclonal antibody at each of up to three time 
points, directed toward the predominant tumor biology at any 
given time point, is safe and feasible in patients with advanced 
GEA, and led to improved efficacy over historical controls.

The incidence of each biomarker subgroup enrolled did 
approximate what would be anticipated within GEA as a 

Figure 4.  A, Comparison of the baseline primary versus metastatic tumor molecular profiles in each of 80 enrolled patients, demonstrating concord-
ant (black) or discordant (red) biomarker assignments. IO, Immuno-oncology, group 1; CPS, combined positivity score; HER2 amplified, group 2; EGFR 
amplified, group 3; FGFR2 amplified, group 4; MET amplified, group 5; MAPK/PIK3CA or “KRAS-like,” group 6; all negative but EGFR expressing by mass 
spectrometry, group 7; all negative or quantity insufficient, group 8. See Table 2 for details on biomarker assignment and treatment algorithm prioritiza-
tion rules. B, Rainbow swimmer plot including up to three lines of therapy by modified ITT (mITT) group (top) versus non-mITT group (bottom). Temporal 
molecular heterogeneity is captured for each patient by colored bars indicating treatment group assignment at each treatment line for up to three lines 
of therapy.
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whole ( 4, 29, 30 ), and therefore, as intended, the results 
observed are representative and generalizable. In larger con-
fi rmatory studies using this trial design, the incidences of 
the biomarker groups would also be expected to approximate 
the actual incidences within the disease because the nature 
of the study is to enroll all comers. However, it is important 
to acknowledge that due to the inevitable overlap of biomarkers 
within a given tumor sample and between primary tumor 
and metastatic sites, the prioritization scheme would inher-
ently then favor certain biomarker groups over others, lead-
ing to somewhat distorted biomarker group and treatment 
assignment incidences. For instance, the actual IO group 1 
incidence  at diagnosis was lower than would be expected 
using CPS ≥ 10, and can be attributed both to the prioritized 
assignment to  HER2  amplifi cation, despite some of these 
tumors also harboring high PD-L1 expression and/or high 
TMB, and to other cases where conversion to PD-L1–negative 
or TMB-low was observed in the baseline metastatic biopsy, 
which took priority when there was observed primary/metas-
tasis discordance. The degree of spatial intrapatient heteroge-
neity of PD-L1 and TMB within GEA was recently reported, 
emphasizing directional discordance from positive primary 
tumors to negative metastatic lesions ( 34 ). 

 The reasoning to devise a structured biomarker testing and 
treatment assignment algorithm was to ensure that outcomes 
could be reproducible by others, rather than the  ad hoc  and 
sometimes spontaneous treatment decisions currently made 
in the “precision medicine” clinic today, especially when there 
is more than one option from which to choose. The rationale 
of the specifi c biomarker groups chosen and their detailed pri-
oritization within the algorithm was based on preclinical and 
clinical evidence available at the time of designing this study 
several years ago. Notably, these groups each remain potential 
targets not yet routinely implemented for fi rst-line and/or 
later-line therapy to date, despite numerous studies attempting 
to do so using classic study designs ( 6–11, 14, 15, 35–49 ). An 
important recent example is the FIGHT study evaluating the 
anti-FGFR2 antibody bemarituzumab for  FGFR2 -amplifi ed 
tumors. The study was originally a phase III study, but given 
FGFR2  amplifi cation biomarker incidence of only ∼5% of GEA 
and an unclear optimal IHC biomarker cutoff, it was down-

sized to a phase II study in part due to accrual infeasibility 
for this rare but important genomic subset ( https://investor.
fi veprime.com/news-releases/news-release-details/fi ve-prime-
therapeutics-reports-fi rst-quarter-2020-results ; ref.  36 ). How-
ever, relevant drug approvals did occur during the conduct 
of this PANGEA study, including the anti-VEGFR2 antibody 
ramucirumab alone or in combination with chemotherapy in 
the second-line setting ( 50, 51 ), and the anti–PD-1 antibody 
pembrolizumab for MSI-H tumors in the second line ( 52, 53 ), 
and for PD-L1 CPS ≥ 1 tumors in the third line ( 54 ). Also in the 
interim, studies of ramucirumab antiangiogenesis in the fi rst 
line were negative for mOS, despite improvements in ORR and 
PFS, adding to prior negative studies with bevacizumab ( 14, 
15, 42, 55 ). Trifl udirine/tipuracil, an oral cytotoxic agent, also 
demonstrated improved survival in the third-line setting or 
higher ( 56 ); notably, no patients were treated with this agent  
during the study or afterward in fourth line or higher. Addi-
tionally, despite the fact that during the conduct of our study, 
several fi rst-, second-, and third-line studies demonstrated 
negative results for unselected and selected patients with 
anti–PD-1/L1 therapies ( 44–49 ), two fi rst-line GEA studies, 
KEYNOTE-590 and Checkmate-649, recently showed improve-
ment in mOS, most notably in subsets of patients with PD-L1 
CPS ≥ 10 or CPS ≥ 5, respectively ( 57, 58 ). It is interesting to 
note that the IO group in our study, defi ned by either of these 
PD-L1 CPS thresholds, was substantially lower in incidence 
than these studies, whereas the mOS of these patients was 16.2 
months in our study compared with 14.4 months (14 months 
in non-Asians) in the Checkmate-649 study ( 58 ). This is poten-
tially due to the higher PD-L1 cutoff of CPS ≥ 10 versus CPS ≥
5 better enriching for more benefi t, due to targeting the meta-
static tumor, and/or due to continued therapeutic matching 
over sequential therapies. Further studies will need to defi ne 
the optimal PD-L1 cutoff and sample site to assess ( 34 ). A key 
advantage of the type II expansion-platform design is the need 
for far fewer patients, and therefore less time and resources, to 
arrive at the same answer compared with a large study such as 
Checkmate-649 with ∼1,600 patients. 

 Notwithstanding results of these interim IO studies report-
ing during or after the conduct of our study, we continued 
the PANGEA study as designed, because its logic dictated 

 table 4.      Grade 3 or higher treatment-related adverse events over three treatment lines and by treatment line  

Event All lines ( n  = 68) 1L ( n  = 68) 2L ( n  = 53) 3L ( n  = 25)
Adverse event
   Fatigue 9 (13%) 3 (4%) 3 (6%) 4 (16%)
   Anorexia 1 (1%) — 1 (2%) —
   Infection 3 (4%) 2 (3%) 1 (2%) —
   Nausea/vomiting 6 (9%) 4 (6%) 2 (4%) —
   Diarrhea 3 (4%) — 3 (6%) —

Hematologic toxicity
   Neutropenia 12 (18%) 6 (9%) 4 (8%) 3 (12%)
   Anemia 11 (16%) 7 (10%) 2 (4%) 3 (12%)
   WBC decreased 6 (9%) 1 (1%) 2 (4%) 3 (12%)
   Thrombocytopenia 4 (6%) 4 (6%) — —

   Abbreviations: 1L, fi rst line; 2L, second line; 3L, third  line.   
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that the patient would be matched with the monoclonal 
antibody best suited for them at any given time through their 
treatment course. If a tumor did not possess relevant bio-
markers to predict benefit of a given targeted therapy, then 
the patient was not treated with that therapy, irrespective of 
whether or not it was approved for that treatment line. More
over, despite the perceived negative first-line antiangiogenesis 
studies that demonstrated improved PFS, ORR, and trends 
to OS (14, 42), the PANGEA strategy continued to match 
antiangiogenesis to lower-priority arms in the first and later 
lines if it was the best available option, because it was hypoth-
esized that some benefit (HR ∼0.8–0.85) could still be realized 
relative to chemotherapy alone, thus contributing to the 
overall favorable ITT outcome. Consistent with the hypoth-
esis, although the lower-tier groups experienced worse out-
come compared with higher-tier groups within the PANGEA  
algorithm as was anticipated, they still fared better than 
would be expected when compared with historical controls. 
In fact, the patients assigned to antiangiogenesis therapy in 
the first line, of whom most tended to remain in these groups 
(groups 6 and 8) over subsequent lines, achieved excellent 
one-year OS of 62% to 67% and mOS of 14 to 15.1 months. 
Indeed, if a study was conducted with ∼1,600 patients, such 
as Checkmate-649, with an antiangiogenesis agent for first-
line therapy, this would be larger than the combined phase 
III studies of both AVAGAST with bevacizumab (N = 774) 
and RAINFALL with ramucirumab (N = 645; refs. 14, 54), 
with more power to detect this smaller but real difference in 
survival. This has also been demonstrated for first-line colo-
rectal cancer in a pooled analysis of seven trials with >3,750 
patients (59). Additionally, among these tumors lacking bet-
ter targeted therapeutic options, the improved outcomes 
observed may in particular be attributed to the continuation 
of antiangiogenesis beyond progression, similar to that expe-
rienced with colorectal (60), hepatocellular (61), breast (62), 
and other cancers (63).

The PANGEA logic did not spare those who would be con-
sidered HER2-positive clinically based on the primary tumor 
alone, because per protocol if there was spatial heterogene-
ity, the metastatic site would dictate treatment assignment, 
with the rationale that metastases are the ultimate drivers of 
poor outcome. For the cases having baseline HER2-positive 
primary tumors but HER2-negative metastatic lesions, some 
tumors at PD1 or PD2 eventually did demonstrate HER2 pos-
itivity in progressing lesions, whereby patients then received 
trastuzumab at that time. In contrast, other such cases at 
PD1 or PD2 remained HER2-negative in progressing lesions 
despite persistently HER2-positive primary tumors, and thus 
trastuzumab was never used per the algorithm. Interestingly, 
of these cases with HER2-positive primary tumors having 
never received trastuzumab, none required palliative radio-
therapy to the primary tumor. Also, some cases that were 
HER2-negative in the primary tumor were HER2-positive at 
the metastatic site, whereby they would not have otherwise 
received anti-HER2 therapy without intentionally evaluating 
the metastatic disease burden. Indeed, this was the rationale 
for including “HER2-positive” and “HER2-negative” tumors 
within the same study—because there is often an interplay 
between these groups within the same patient. Furthermore, 
this is the first study to our knowledge to prospectively 

address baseline spatial and temporal heterogeneity for 
HER2-positive disease, and may account for the extremely 
good outcome observed in this group. Trastuzumab beyond 
progression with alternate chemotherapy backbones, in the 
appropriately selected patients, appeared very active and also 
safe. Thus, compared with this and other readily available 
anti-HER2 strategies, the benefit of the recently reported 
anti-HER2 antibody–drug conjugate trastuzumab–deruxtecan 
must be weighed against the higher clinical and financial tox-
icity that comes with it, should it indeed demonstrate activity 
in Western populations similar to that it has in Asia (64).

The improved clinical outcomes observed across the ITT 
group and subgroups in this study, including the HER2 group, 
support the strategy of assessing the main problematic com-
ponent of the disease at any given time point and targeting 
it therapeutically in a prioritized manner. With this strategy, 
it was common for systemic disease to be well controlled, but 
with an eventual local progression from the primary tumor 
requiring palliative radiotherapy. This occurred in 14 (20.6%) 
patients, or 28% of proximal esophagogastric junction dis-
ease. This occurred more than 10 months from diagnosis in 
half of these cases. In 89% of these cases with available tumor 
just prior to radiotherapy, the primary tumor had either lost 
the intended biological target (e.g., loss of HER2 or EGFR 
amplification) and/or acquired other likely resistance mecha-
nisms such as other concurrent RTK amplifications and/
or KRAS aberrations (29, 40, 65), phenomena also reported 
in the interim by others (66, 67). After completion of radio-
therapy, each patient resumed the previous systemic therapy 
until systemic disease progression. Additionally, despite brain 
metastases being infrequent for GEA (68), the CNS served 
as a sanctuary site in an extraordinarily high percentage of 
HER2- and EGFR-amplified tumors, consistent with previous 
reports (69). With better control of systemic disease using 
targeted approaches, this will likely become more common, 
as seen in other tumors (69, 70).

Biomarker heterogeneity was prevalent, both spatially at 
baseline and sequentially over each treatment line. Notably, 
this was a conservative analysis, only considering molecular 
discordance spatially and temporally if a treatment assign-
ment was changed per the algorithm. However, metastatic 
and later-line tumors commonly remained within the same 
treatment assignment yet harbored additional molecular 
aberrations compared with the baseline primary tumor. Com-
mon examples of this were among RTK-amplified tumors 
where acquired KRAS mutations and/or amplifications were 
observed in addition to the original RTK amplification (65). 
Here, per the algorithm used in this study, tumors would 
still be classified as the same baseline RTK-amplified tumor 
despite these acquired genomic events. Future studies could 
test alternative postprogression algorithms (16).

Regardless, using this conservative molecular heterogene-
ity estimate of the PANGEA algorithm, an interim evaluation 
of baseline spatial heterogeneity after 28 patients enrolled 
previously reported 9 of 28 (32%) patients receiving a dif-
ferent therapy by the metastatic profile compared with the 
primary profile (71). Herein, we report the final baseline 
spatial heterogeneity leading to altered treatment assignment 
in 28 of 80 (35%) patients enrolled. Additionally, substantial 
temporal biomarker evolution led to treatment change at the  
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time of changing to second-line (49%) and third-line (48%) 
therapies. In contrast, those patients with FGFR2 or MET ampli-
fication at diagnosis mostly retained this designation through-
out their course of therapy when treated with chemotherapy 
alone. However, both patients with FGFR2 amplification and 
both patients with MET amplification within the modified-
ITT group, after exposure to respective targeted therapies, 
evolved to different biomarker groups at the time of pro-
gression. This suggests that imposing pressure on the bio-
logical target, though leading to improved clinical outcomes, 
will ultimately force evolutionary change and drive even-
tual resistance, often through selection of biomarker-nega-
tive clones, whereas chemotherapy alone generally will not. 
Observed mechanistic resistance in the mITT population 
occurred through various means, often through selection 
of RTK-negative clones, downstream MAPK/PIKCA aberra-
tions, and/or upregulation of PD-L1 expression. The latter 
phenomenon of PD-L1 upregulation, as recently reported 
by our group (34) and others (72), occurred in 7 of 28 (25%) 
patients harboring RTK-amplified tumors and exposed to 
RTK-targeted therapies, supporting future dual anti-RTK 
antibody plus anti–PD-1 antibody approaches in order to 
enhance simultaneous innate and acquired immune activity, 
respectively (23, 24, 43, 73, 74).

There are limitations to this study. The first is the lack of a 
randomized control arm and its conduct at a single academic 
center, each leading to potential selection bias. However, the 
study was intended to demonstrate the feasibility, safety, and 
proof of principle of this novel approach. Also, patients were 
enrolled with baseline high-risk features including 38% with 
peritoneal disease, 9% with ECOG performance status of 2, 
and 70% of patients with high baseline NLRs, indicating poor 
prognosis (75). Patients also consented, screened, enrolled if 
eligible, and, per protocol, then immediately initiated first-
line palliative cytotoxic therapy while awaiting biomarker 
testing (as opposed to waiting for molecular testing during 
a screening period while not receiving any therapy until 
receipt of the results). These factors suggest that the patients 
enrolled on PANGEA were not enriched for better progno-
ses (e.g., those who could afford to await biomarker testing 
results before initiating therapy), and indeed some patients 
enrolled here would not be candidates for typical phase II or 
III biomarker-selected studies. The study also accrued at two 
community satellite sites with a number of treating investiga-
tors. All of these points make the findings of this real-world 
patient population more generalizable, yet still requiring 
further prospective randomized and multicenter prospective 
validation. 

The second limitation is the lack of power to evaluate each 
biomarker subgroup. This is an inherent limitation of the 
expansion-platform type II design, and a recognized conces-
sion in order to confront the problem of difficult-to-study 
low-incidence biomarker groups as well as the sequential 
profiling and matching through later lines of therapy where 
subgroups get divided even further by various mechanisms of 
resistance (16, 21). Low-incidence biomarker groups remain 
challenging to study (20, 76). Isolated prospective evaluations 
of each component of the PANGEA strategy individually 
often either have been attempted and overall found negative 
or have been prohibitive and infeasible to conduct (https://

investor.fiveprime.com/news-releases/news-release-details/
five-prime-therapeutics-reports-first-quarter-2020-results; 
ref. 39). The hypothesis tested here evaluated whether the 
strategy together could overcome these hurdles. However, to 
demonstrate that no one “supergroup” could sway the result, 
preplanned analyses first excluding the HER2-amplified group 
and second excluding all higher-priority genomically targeted 
groups 1–4 (IO, HER2, EGFR, and FGFR2) showed that the 
remaining groups still experienced improved outcomes, to 
the degree that would be expected, compared with historical 
controls. Group 7, however, which was EGFR-overexpressing 
tumors treated with an anti-EGFR antibody after excluding 
higher-priority groups as well as group 6 MAPK/PIK3CA-
driven tumors, did apparently underperform. Although it 
cannot be excluded due to lack of a randomized control that 
this group may have a worse natural prognosis that might 
still have benefited from anti-EGFR therapy (or due to low 
numbers and lack of power to identify a true benefit), this 
group would not proceed into future iterations of the per-
sonalized strategy. 

Third, we were unable to secure collaboration to obtain 
anti-FGFR2 or anti-MET antibodies. As a consequence, given 
that each of these biomarkers is notably associated with 
poor prognoses (36, 77), this may partially explain the worse 
outcomes of the non-ITT group, and also therefore does not 
necessarily represent the whole of GEA as a historical control. 
However, we were able to get access through a parallel open-
label phase Ib study for the anti-FGFR2 antibody bemaritu-
zumab (31, 36), plus modified FOLFOX6 for 2 patients in the 
FGFR2 group 4 who were treated per protocol and included 
in the ITT analyses. Additionally, we were able to obtain 
off-label MET small-molecule inhibitors as monotherapy 
for 2 patients in the MET group 5, and these were analyzed 
in a preplanned mITT analysis that showed an even better 
mOS of 16.3 months when including these patients treated 
with a “PANGEA-like” strategy compared with the remain-
ing non-mITT group. Next-generation regulation to recog-
nize type II expansion-platform studies such as PANGEA 
to encourage pharmaceutical company participation will 
be important for the future success of moving personal-
ized treatment strategies forward. Smaller companies, not 
able to conduct large 1,600+ patient studies, would benefit 
from this significantly. To facilitate and encourage innova-
tion, one might envision an accelerated conditional approval 
pathway, akin to those already in place for novel therapies 
based on therapeutic response rates, for each component of a 
prospectively tested personalized treatment strategy. Indeed, 
novel neoantigen vaccines entering the clinic are the epitome 
of the expansion-platform type II design, with each patient 
having the same diagnostics and treatment platform/algo-
rithm, but with a uniquely engineered therapeutic vaccine 
specific to only their tumor—a true “N-of-1” personalized 
approach (78). Of note, one randomized expansion-platform 
type II study was reported in the interim since we initiated 
our study (79). Although the utility of its prespecified treat-
ment strategy was refuted by the results, the SHIVA study 
tested a treatment strategy prospectively and introduced the 
uncertainty surrounding regulatory approvals of multiple 
diagnostics and therapies simultaneously if such a study was 
positive (21).
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Finally, the evaluation of secondary endpoints, such as 
ORR2,3, PFS2,3, and DCR2,3, in later lines of therapy was limited 
by lower power due to many patients not proceeding to these 
treatment lines due to either remaining on earlier lines at the 
time of data cuts or inability to proceed due to progressive 
clinical deterioration. Also, many patients with clinical pro-
gressions did not have RECISTv1.1 measurable disease after 
such high ORR1 (74%) with deep responses, but were still eval-
uable and contributed to high DCR2 (72%) and DCR3 (68%). 
Importantly, in comparison with a dedicated standalone sec-
ond- or third-line study capturing all types of patients pro-
ceeding to next-line therapy (e.g., quick progressors and late 
progressors), the patients on this study who would proceed to 
later lines at any data cut would represent those patients with 
more aggressive tumors compared with those remaining on 
earlier lines, and thus would impose a negative selection bias 
for later-line secondary analyses. The criteria for treating in 
second or third line on PANGEA were also less stringent and 
more practical than would otherwise be routinely imposed 
at screening for typical late-line studies. As a consequence, 
although a higher than expected 87% and 42% of patients 
proceeded to second-line and third-line therapy, respectively, 
15% and 44% of those did not receive intended new targeted 
agents because they deteriorated clinically prior to our being 
able to identify and implement them. Despite this drop-off 
of successful matching, these patients were included within 
all ITT analyses. As such these factors should be considered 
when comparing these later-line secondary endpoints from  
PANGEA with other independent later-line studies. Rele-
vantly, another possibility to explain the higher rates of later-
line therapy may be that the PANGEA approach alters the 
biology of the cancer, making patients more likely to proceed 
to later lines, which requires further exploration.

This study evaluated the utility of optimizing the chemo-
therapy sequence, the biomarker profiling, and the matching 
of molecular therapies at baseline and over time, which resulted 
in improved outcomes compared with historical controls 
for newly diagnosed metastatic GEA. However, despite these 
advances, hypotheses are formed on how to further improve 
on these outcomes. The therapeutic resistance observed, which 
generally converged on common pathways and mechanisms, 
suggests that preemptive dual targeted inhibition may lead 
to even further progress, such as combined RTK inhibition 
for concurrent RTK-amplified tumors (40, 80, 81), IO and 
antiangiogenesis (82, 83), or a combination of IO and RTK 
inhibition (40, 43, 73, 74, 84), in a similarly prioritized manner. 
The results of PANGEA support the prospective comparison 
of such personalized treatment strategies in a randomized 
controlled trial.

Methods
Study Design and Participants

This study was an investigator-initiated, phase II, open-label, single- 
arm type II expansion-platform trial (16, 21, 22) performed at The 
University of Chicago along with two of its community-based satel-
lite sites. The study protocol and all amendments were approved by 
The University of Chicago institutional review board. The protocol 
was conducted in accordance with the Declaration of Helsinki and 
was overseen by an internal data and safety monitoring committee. 
All patients provided written informed consent before enrollment.

Eligible patients were ages 18 years or older with histologically 
proven metastatic GEA from a biopsy of a stage IV site (cytology 
was acceptable from effusions/ascites). Patients were required to 
have newly diagnosed advanced disease, or recurrence after previous 
curative-intent therapy if completed more than six months prior. 
Key inclusion criteria included ECOG performance status of 0 to 2, 
and no grade 2 or higher peripheral edema, peripheral neuropathy, 
or diarrhea. Patients had measurable or evaluable nonmeasurable 
disease as per RECISTv1.1. Key exclusion criteria included history of 
known or suspected autoimmune disease, active second malignancy, 
intercurrent illness/infection, cardiac ejection fraction less than 
50%, or history of cerebral vascular accident or myocardial infarc-
tion within six months. Full eligibility details are in the protocol (see 
Appendix in the supplementary files).

Biomarker Assessment and Prioritized  
Treatment Assignment

Biomarker profiling assays were performed in parallel on all sam-
ples, including baseline primary and metastatic biopsies, as well as 
first (PD1) and second (PD2) progressive disease biopsies. Analyses  
included NGS using FoundationOne, including MSI and TMB 
testing (85), along with CPS of PD-L1 by IHC using the 22C3 
pharmDx assay (86), all from Foundation Medicine. PD-L1 was 
considered positive at CPS ≥10, and TMB was high if ≥15 muta-
tions per megabase (34). Genes were considered amplified by 
NGS if eight copies or higher were observed. HER2 status was 
assessed and considered positive if IHC3+ or IHC2+ together with 
FISH amplification (ratio of HER2:CEP17 probes greater than or 
equal to 2; ref. 87). Circulating tumor DNA (ctDNA) was obtained 
and analyzed using Guardant360 at baseline and serially at each 
disease progression time point, as previously described (29, 88). 
If EGFR or MET amplification was identified in one of a patient’s 
tissue- or ctDNA-NGS results, all of that patient’s samples were 
analyzed for these two genes by FISH at Neogenomics (40). If a 
sample demonstrated PD-L1 CPS ≥ 10 and was not MSI-H, then 
Epstein–Barr virus (EBV) status was determined by ISH using 
probes against Epstein–Barr encoded RNA1. EGFR expression 
by selected-reaction-monitoring mass spectrometry (SRM-MS) 
was quantified and considered positive if above the limit of 
detection (attomols/microgram), as previously described (40, 89). 
To address the possibility of insufficient tissue to perform all 
intended analyses, testing was prioritized on each sample by a set 
of rules in accordance with the treatment assignment algorithm 
described below.

Based on the results of this extensive molecular profiling, a tumor 
sample was assigned to one of eight biological categories based on a 
predefined algorithm (Table 2): Group 1 IO, including MSI-H, EBV+, 
TMB high [≥15 mutations/megabase (mt/Mb)], and/or PD-L1 IHC 
CPS ≥10; groups 2–5 RTK amplification of HER2, EGFR, FGFR2, 
and MET, respectively; group 6 genomic activation of the MAPK/
PIK3CA/GNAS pathways; group 7 EGFR expressing by SRM-MS; 
group 8 all negative. The group 1 IO was prioritized second to 
group 2 HER2-positive tumors in the first-line setting only, but 
was then first priority in second line and later. For groups 2–5, if 
two or more RTKs were concurrently amplified, then the gene with 
the highest copy number would take priority, given evidence that 
higher gene copies correlated with higher expression, which cor-
related with higher efficacy of matched targeted therapy (3, 29, 40, 
90–93). If the final biomarker assignment was discordant between 
the primary and metastatic tumors at baseline prior to first-line 
therapy, then the metastatic tumor would take precedence. If the 
quantity of metastatic tissue was not sufficient (QNS) to complete 
all assays and biomarker assignment, then ctDNA could be used 
for biomarker assignment. If there were no alterations actionable 
by ctDNA per the algorithm, then the primary tumor profile was 
used. If QNS despite these steps, then the patient would be assigned 
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to group 8. Temporal (PD1, PD2, and PD3) biopsies were obtained 
from progressing lesions.

Therapeutic Procedures
Cytotoxic doublets were administered as biweekly treatment cycles 

in each of up to three therapy lines (Supplementary Fig. S3). First-line 
cytotoxic therapy of modified FOLFOX6 entailed day 1 oxaliplatin  
85 mg/m2 i.v. with leucovorin 200 mg/m2 i.v. over 2 hours, then 
5-fluorouracil (5FU) bolus 400 mg/m2 i.v., then 2,400 mg/m2 i.v. 
continuous infusion over 46 hours. An 8/2016 amendment per-
mitted, at the discretion of the treating investigator, omission of 
the 5FU bolus and leucovorin from the onset of treatment (modi-
fied FOLFOX7). Second-line cytotoxic therapy of modified FOLFIRI 
(no 5FU bolus) entailed irinotecan 180 mg/m2 i.v. with leucovorin  
200 mg/m2 i.v. over 2 hours, then 5FU 2,400 mg/m2 over 46 hours. 
Third-line cytotoxic therapy of FOLFTAX entailed docetaxel 50 mg/m2 
i.v. with leucovorin 200 mg/m2 i.v. over 2 hours, then 5FU 2,400 mg/m2 
over 46 hours (94–96). Palliative radiotherapy to the primary tumor 
of 30 Gy over two to three weeks was allowed if patients experienced 
worsening dysphagia and/or bleeding consistent with localized dis-
ease progression while all other systemic disease was controlled; 
systemic therapy was held during this time and then resumed one to 
two weeks after completion of radiotherapy.

All adverse events were graded according to the NCI Common Tox-
icity Criteria for Adverse Events version 4.0. Intrapatient dose reduc-
tions of oxaliplatin, irinotecan, docetaxel, and 5FU were allowed 
depending on the type and severity of toxicity; omitting the 5FU 
bolus was the first modification per protocol for most toxicities, 
upon which resuming the bolus in any subsequent cycle or line was 
not permitted. Additionally, any dose modifications to the 5FU or 
leucovorin were carried over to next-line therapies.

Patients began first-line FOLFOX therapy immediately while 
biomarker testing was initiated. Upon obtaining biomarker group 
assignment according to the algorithm (Table 2), the appropriate 
monoclonal antibody was added to the next scheduled dose of cyto-
toxic therapy, continuing every two weeks. Upon each disease pro-
gression (PD1 and PD2), patients changed to the next-line cytotoxic 
doublet while remaining on the prior assigned monoclonal antibody 
until PD1/PD2 molecular profiling results were obtained, upon 
which the appropriate antibody would be incorporated at the next 
scheduled dose of cytotoxic therapy.

Group 1 (IO) tumors received anti–PD-1 antibody, nivolumab 200 mg  
i.v. over 30 minutes. Group 2 (HER2-amplified) tumors received 
anti-HER2 antibody, trastuzumab 6 mg/kg loading dose on the 
first cycle then 4 mg/kg i.v., over 90 minutes and then 30 minutes 
if the initial infusion was well tolerated. Group 3 (EGFR-amplified) 
tumors received anti-EGFR antibody, ABT806 24 mg/kg i.v. over  
30 minutes (97). When available, group 4 (FGFR2-amplified) tumors 
received anti-FGFR2 antibody, bemarituzumab (FPA-144) 15 mg/
kg over 30 minutes (31, 35). Group 5 (MET-amplified) tumors did 
not have a monoclonal antibody available. Group 4 and group 5 
tumors without available antibodies were treated with standard 
doublet cytotoxic therapy alone and considered non-ITT. Whenever 
possible, group 5 patients received off-label crizotinib 250 mg orally 
twice daily and/or cabozantinib 60 mg orally daily after failure of 
first-line cytotoxic therapy, and these patients were included in a pre-
planned mITT analysis. Group 6 (MAPK/PIK3CA) tumors received 
anti-VEGFR2 antibody, ramucirumab 8 mg/kg over 1 hour. Group 
7 (EGFR expressing, nonamplified) tumors received anti-EGFR anti-
body, ABT806 24 mg/kg i.v. over 30 minutes. Group 8 (negative for 
all biomarkers or QNS) tumors received anti-VEGFR2 antibody, 
ramucirumab 8 mg/kg over 1 hour (50, 98). Dose modifications of 
monoclonal antibodies were not allowed, but could be delayed until 
resolution or stabilization of adverse events attributed to the anti-
body while continuing cytotoxic therapy alone.

To limit cumulative toxicity, oxaliplatin, irinotecan, and doc-
etaxel were permitted to be stopped and resumed intermittently 
(“OPTIMOX,” ref. 99; “OPTIMIRI,” ref. 100; and “OPTITAX”), while 
continuing maintenance 5FU plus monoclonal antibody. Each line 
of therapy was considered to have failed only upon disease progres-
sion on the full cytotoxic doublet or progression on maintenance 
therapy but inability to resume the cytotoxic doublet for any reason. 
Patients were assessed for disease progression by imaging of the 
chest, abdomen, and pelvis every two months (four cycles). Patients 
had study treatment discontinued if they developed progressive dis-
ease as defined by RECIST1.1 after three lines of therapy, or earlier if 
unable to continue to the next treatment line for any reason. Other 
criteria for removal included withdrawal of consent or treatment-
related adverse events not resolving after nine weeks of treatment 
interruption.

Outcomes
The primary efficacy endpoint of the study was one-year OS, 

defined as the proportion of patients treated with ITT alive at  
12 months. All patients were followed for survival to the final data 
lock on August 20, 2020. Other primary endpoints were safety and 
feasibility; the molecular approach would be deemed safe if less 
than a 5% serious adverse event rate was observed from baseline 
and serial biopsies. The molecular approach would be deemed 
feasible if at least 85% of patients were assigned to therapy within 
two months of enrollment and if at least 85% of patients obtained 
a successful biopsy at PD1. Secondary endpoints included overall 
safety and tolerability; progression-free survival for each line of 
therapy (PFS1,2,3) calculated as the time from starting each cyto-
toxic doublet until documentation of clinical or radiologic disease 
progression or death, whichever occurred first; objective response 
rate (ORR1,2,3) by RECIST1.1 and disease control rate (DCR1,2,3) for 
each line of therapy; and time to PANGEA treatment failure (TTF) 
among the patients treated with ITT. Outcomes were compared 
with historical outcomes and also those non-ITT patients having 
lack of availability of monoclonal antibodies (group 4 FGFR2 and 
group 5 MET). A preplanned mITT analysis included patients 
within group 5 able to get off-label tyrosine kinase inhibitors 
during their treatment course. Prespecified secondary analyses 
included analysis of OS, PFS, ORR, and DCR by individual bio-
marker group by treatment line, as well as contrasting the pooled 
outcomes of higher-priority groups 1–4 (or groups 1–5 for mITT) 
compared with lower-priority groups 6–8 of the algorithm, and 
also evaluating outcomes after excluding the effect of group 2 
(HER2). Characterization of biomarker heterogeneity at baseline 
spatially and over time after targeted therapy were also secondary 
endpoints. Given the association with prognosis, an ad hoc charac-
terization of baseline absolute NLR was performed, as previously 
described (75).

Statistical Analyses
Using a z-test based on the Greenwood standard error to accom-

modate censoring, 68 patients treated per ITT provided 80% power to 
detect an improvement in one-year OS rate from 50% historically to 
63% with a one-sided alpha of 10%. Assuming exponential survival, 
this corresponds to an HR of 0.67. The historical 50% one-year rate 
implies a median of 12 months and was obtained as a weighted aver-
age of a sample comprised of 20% of patients having HER2-positive 
disease with an anticipated H0-HER2+ mOS of 16 months and 80% of 
patients having HER2-negative disease with an anticipated H0-HER2- 
mOS of 11 months. [Of note, 16 of 80 (20%) of all patients enrolled, 
or 68 (23.5%) of the ITT, or 16 of 70 (22.9%) of the mITT patients in 
our study were HER2-positive.] Patients receiving at least one dose 
of first-line FOLFOX therapy and having availability of monoclo-
nal antibody (though not necessarily receiving it) were considered  
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evaluable for the primary outcome by ITT. Analysis of OS, PFS (dur-
ing first, second, and third-line treatments), and TTF was estimated 
using Kaplan–Meier methods. All secondary endpoints including 
safety were assessed in all ITT patients who received at least one dose 
of first-line cytotoxic therapy. The log-rank test was used to compare 
OS, PFS, and TTF between various subgroups. All statistical analyses 
were done using Stata version 16.0 (StataCorp). This trial is regis-
tered with ClinicalTrials.gov (NCT02213289).
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