FASTING-MIMICKING DIET AND HORMONE THERAPY INDUCE BREAST CANCER REGRESSION (2020)

Title	Fasting-mimicking diet and hormone therapy induce breast cancer regression
Published in	Nature, 583(7817), 620 - 624. Nature Publishing Group. ISSN 0028-0836.
Author	Caffa, Irene; Spagnolo, Vanessa; Vernieri, Claudio; Valdemarin, Francesca; Becherini, Pamela;
	Wei, Min; Brandhorst, Sebastian; Zucal, Chiara; Driehuis, Else; Ferrando, Lorenzo; Piacente,
	Francesco; Tagliafico, Alberto; Cilli, Michele; Mastracci, Luca; Vellone, Valerio G; Piazza, Silvano;
	Cremonini, Anna Laura; Gradaschi, Raffaella; Mantero, Carolina; Passalacqua, Mario; Ballestrero,
	Alberto; Zoppoli, Gabriele; Cea, Michele; Arrighi, Annalisa; Odetti, Patrizio; Monacelli, Fiammetta;
	Salvadori, Giulia; Cortellino, Salvatore; <u>Clevers, Hans;</u> De Braud, Filippo; Sukkar, Samir G;
	Provenzani, Alessandro; Longo, Valter D; Nencioni, Alessio
Publisher	Hubrecht Institute for Developmental Biology and Stem Cell Research
Date issued	2020-7
Access	Closed Access
Reference(s)	Animals, Biological Factors/blood, Breast Neoplasms/diet therapy, Diet Therapy/methods, Diet,
	Healthy/methods, Disease Models, Animal, Disease Progression, Drug Resistance,
	Neoplasm/drug effects, Early Growth Response Protein 1/metabolism, Fasting/physiology,
	Female, Fulvestrant/administration & dosage, Humans, Insulin/blood, Insulin-Like Growth
	Factor I/metabolism, Leptin/blood, MCF-7 Cells, Mice, Inbred NOD, Mice, SCID, PTEN
	Phosphohydrolase/metabolism, Piperazines/administration & dosage,
	Pyridines/administration & dosage, Receptors, Estrogen, Receptors, Progesterone,
	Tamoxifen/adverse effects, Xenograft Model Antitumor Assays
Language	English
Туре	Article
Publisher	Nature Publishing Group
Abstract	Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors.
	Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary
	and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of
	hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5
	enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering
	circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of
	EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase $4/6$
	inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour
	regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a

fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fastingmimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.

Publication

https://pure.knaw.nl/portal/en/publications/72cead5c-ea9d-4d...