Dati generati da screening molecolari: piccoli trials e Big Data

Luca Mazzarella, MD PhD Istituto Europeo di Oncologia

An early example of targeted therapy developement

1987

Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene

Dennis J. Slamon,* Gary M. Clark, Steven G. Wong, Wendy J. Levin, Axel Ullrich, William L. McGuire

Evolution of genetic testing methods

The International Cancer Genome Consortium

1. The prevalence of somatic mutations across human cancer types is extremely variable and influenced by the tissue of origin.

LB Alexandrov et al. Nature 000, 1-7 (2013) doi:10.1038/nature12477

2. Some tumors are dominated by SNVs, others by structural variants

Ciriello et al, Nature Genetics 45, 1127–1133 (2013)

3. The tumor landscape is dominated by few frequent mutants (e.g. TP53, PIK3CA) and an ocean of rare mutants

4a. Specific cancers are characterized by defining mutational signatures

The issue: long tail of very rare biomarkers

How to tackle the fragmentation of the biomarker-positive population?

Table 2. Examples of Master Protocols in Cancer.*						
Trial	Description	Design	Drug or Drugs	Disease and Target	Study Population	End Points
B2225 ⁶	Basket trial to determine cancers responsive to imatinib	Phase 2, multicenter, open-label, noncom- parative trial	Single: imatinib (400 or 800 mg per day)	40 cancers (solid tumors and hematologic cancers) with activation of ima- tinib target kinases	186 patients ≥15 yr of age	Tumor response (SWOG criteria and investiga- tor's assessment)
BRAF V6007	Basket trial to evaluate the efficacy of vernurafenib in nonmelanoma can- cers	Early phase 2, multi- center, open-label, noncomparative, adaptive trial using Simon's two-stage design	Vemurafenib monotherapy or (in some patients with colorectal cancer) vemu- rafenib plus cetuximab	Multiple nonmelanoma can- cers with BRAF V600 mu- tations; eight tumor-spe- cific cohorts plus an "all others" cohort	122 adults (≥18 yr of age)	Response rate (assessed by investigators ac- cording to RECIST or IMWG criteria) at wk 8
NCI-Match ⁸	Umbrella trial to determine whether treating can- cers according to mo- lecular abnormalities is effective	Exploratory, multicenter, noncomparative trial	Multiple: 30 treatments (as of May 2016), both FDA- approved and investiga- tional, that target gene ab- normalities	Advanced solid tumor, lym- phoma, or myeloma; DNA sequencing for ac- tionable mutations	35 adults planned per substudy; pediatric study to begin in 2017	Tumor response (prima- ry) and progression- free survival
BATTLE-19	Umbrella trial to evaluate targeted therapies in chemotherapy-refracto- ry NSCLC	Phase 2, single-center, comparative, adap- tive randomization trial	Multiple: three monotherapies (erlotinib, vandetanib, and sorafenib) and one combi- nation (erlotinib plus bex- arotene)	Advanced NSCLC; targets in- cluded EGFR mutation, KRAS/BRAF mutation, VEGF expression, and RXRs/CyclinD1 expres- sion	255 adults in whom ≥1 chemothera- py regimen had failed	Complete or partial re- sponse or stable dis- ease according to RECIST criteria at wk 8 (primary), progres- sion-free survival, overall survival, and toxicity
I-SPY 2 ¹⁰⁻¹²	Adaptive platform trial to identify treatment regi- mens for locally ad- vanced breast cancer in the context of neoadju- vant therapy on the ba- sis of biomarker signa- tures	Phase 2, multicenter, comparative, adap- tive randomization trial	Multiple: standard chemother- apy and five new drugs (ini- tially) as add-on to chemo- therapy; 12 treatments test- ed to date, with latest (pa- tritumab) added October 2016	Early, high-risk breast cancer; three biomarkers (hor- mone-receptor status, HER2 status, and MammaPrint risk score) define eight genetic sub- groups	1920 women (esti- mated) with in- vasive tumor ≥2.5 cm in di- ameter	Pathological complete response
Lung-MAP ¹³⁻¹⁵	Master protocol to evaluate biomarker-matched therapies in rare squa- mous-cell subsets of NSCLC	Phase 2–3 comparative trial	Multiple: four investigational drugs plus one therapy for no-match control group (initially); three investiga- tional drugs remain	Squamous-cell NSCLC; mul- tiple targets (four molec- ular targets initially; three remain)	100–170 patients planned for phase 2 (40 are now enrolled); 300–400 planned for phase 3	Objective response rate, progression-free sur- vival, and overall sur- vival

BASKET TRIALS: EXAMPLES

Vemurafenib in non-melanoma BRAF-mutated cancers

Hyman DM et al. N Engl J Med 2015;373:726-736.

Memorial Sloan Kettering Cancer Center

Neratinib in *HER2-* or *HER3*-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 'basket' study

David M. Hyman,¹ Sarina Piha-Paul,² Jordi Rodon,³ Cristina Saura,³ Geoffrey I. Shapiro,⁴ David I. Quinn,⁵ Victor Moreno, ⁶Ingrid Mayer,⁷ Carlos Arteaga,⁷ Valentina Boni,⁸ Emiliano Calvo,⁸ Sherene Loi,⁹ A. Craig Lockhart,¹⁰ Lillian M. Smyth,¹ Joseph Erinjeri,¹ Maurizio Scaltriti,¹ F Javier Carmona,¹ Gary Ulaner,¹ Jean Torrisi,¹ Juber Patel,¹ Jiabin Tang,¹ Fanli Meng,¹ Duygu Selcuklu,¹ Helen Won,¹ Nancy Bouvier,¹ Michael F. Berger,¹ Richard E. Cutler, Jr.,¹¹ Feng Xu,¹¹ Anna Butturini,¹¹ Lisa D. Eli,¹¹ Grace Mann,¹¹ Cynthia Farrell,¹¹ Alshad S. Lalani,¹¹ Richard Bryce,¹¹ Funda Meric Bernstam,² José Baselga,¹ David B. Solit¹

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³Vall d'Hebron University Hospital, Barcelona, Spain; ⁴Dana Farber Cancer Institute, Boston, MA, USA; ⁵ USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁶ START Madrid Fundación Jímenez Díaz, Madrid, Spain; ⁷Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ⁸START Madrid Group, Madrid, Spain ⁹Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ¹⁰Washington University in St. Louis School of Medicine, St. Louis, MO, USA; ¹¹Puma Biotechnology Inc, Los Angeles, CA, USA

Enrollment by tumor type

Neratinib monotherapy (n=141)

HER2-mutation positive

• Lung cancer	26 (18.4)
Breast cancer	25 (17.7)
Bladder/urinary	16 (11.3)
tract cancer Solid	15 (10.6)
tumors (NOS)	12 (8.5)
Colorectal cancer	9 (6.4)
Biliary tract	7 (5.0)
cancer Endometrial	5 (3.5)
cancer Cervical cancer	5 (3.5)
Gastroesophageal	4 (2.8)
cancer Ovarian cancer	

HER3-mutation positive

Solid tumors (NOS)

17 (12.1)

Some experience with a basket trial in IEO with FGFR inhibitors

UMBRELLA TRIALS: EXAMPLES

Adaptive randomization

I-SPY 2 Adaptive Trial Design

* HER2 positive participants will also receive Trastuzumab. An investigational agent may be used instead of Trastuzumab.

Neratinib

PARK ET AL NEJM 2016

Veliparib + CBDCA

RUGO ET AL NEJM 2016

NCI-MATCH Weekly Accrual Far Exceeded Projections

1000 -

ECOG-ACRIN

NIH) NATIONAL CANCER INSTITUTE

NCI MATCH INTERIM ANALYSIS

Activated 08/12/15; paused 11/11/15: 92 days		
Patient cases registered for screening	795	
Cases with samples submitted	739	
Cases where labs were able to complete tumor testing	645	87% (N=739)
Cases with mutation matching 1 of 10 available treatment arms	56	9% (N=645)
Patients matching specific eligibility criteria for, and assigned to, a treatment arm	33	5% (N=645)
Patients who entered 7 of 10 available treatment arms	16	2.5% (N=645)

NCI-MATCH Expanded to 25 Arms May 31, 2016

Arm / Target		Drugs(s)	
А	EGFR mut	Afatinib	
В	HER2 mut	Afatinib	
C1	MET amp	Crizotinib	
C2	MET ex 14 sk	Crizotinib	
E	EGFR T790M	AZD9291	
F	ALK transloc	Crizotinib	
G	ROS1 transloc	Crizotinib	
н	BRAF V600	Dabrafenib+trametinib	
I	PIK3CA mut	Taselisib	
Ν	PTEN mut	GSK2636771	
Р	PTEN loss	GSK2636771	
Q	HER 2 amp	Ado-trastuzumab emtansine	

Arn	n / Target	Drug(s)
R	BRAF nonV600	Trametinib
S1	NF1 mut	Trametinib
S2	GNAQ/GNA11	Trametinib
Т	SMO/PTCH1	Vismodegib
U	NF2 loss	Defactinib
V	cKIT mut	Sunitinib
W	FGFR1/2/3	AZD 4547
Х	DDR2 mut	Dasatinib
Y	AKT1 mut	AZD 5363
Z1A	NRAS mut	Binimetinib
Z1B	CCND1,2,3 amp	Palbociclib
Z1D) dMMR	Nivolumab
Z1I	BRCA 1/2	AZD1775

EECOG-ACRIN

NATIONAL CANCER INSTITUTE

Red = accrued 35 patients; Green = nearing 35 patient

Arms added: March 13, 2017

- EAY131-J: Herceptin + Perjeta/HER2 Amp (to follow Arm Q).
- EAY131-L: MLN0128/mTOR Mutations (New target)
- EAY131-M: MLN0128/TSC1/TSC2 Mutations (**New target**)
- EAY131-Z1C: Palbociclib/CDK4/CDK6 Amplification (New target)
- EAY131-Z1E: Loxo 101/NTRK Fusions (New target)
- EAY131-Z1I: AZD1775/BRCA1, BRCA2 mutations (*New target*)

Current: as of June 18, 2017

- > 25 treatment arms; ≈ 50% fully accrued; ≈ 25% well on the way;
 ≈ 25% will need additional accrual from 'rare variant study'
- Assay success rate 94%
- Median assay turnaround time 16 days
- Toxicity acceptable
- Objective responses have been observed

High attrition rates for genome-driven targeted treatment

In a third of the patients, the genomic information from testing was not used for therapy planning (went elsewhere, progressed, died, or went on to a different therapy)

This may be due to the length in obtaining results (average 26 days)

Issues with genetic biomarker-driven trials

- Actual drug allocation is still very low
- Require many drugs to become efficient
- Suffer from elevated attrition rates
 - Turnaround time is crucial and can be improved
- Are best performed as "platform" trials, where new drugs or biomarkers are continuously implemented
- Statistical design is <u>very complex</u>

Population

Target sample size

İİİİ

IF (A): THEN eligible for **drugA** ELSE IF (B): THEN eligible for **drubB** ELSE IF (C): THEN eligible for **drugC** ELSE: **Not allocated**

Drug eligibility

Population

Target sample size

ŤŤŤŤ

Drug eligibility

IF (C): THEN eligible for **DrugC** ELSE IF (A): THEN eligible for **Drug A** ELSE if (B): THEN eligible for **DrugB** ELSE: **Not allocated**

SHIVA: the biggest umbrella trial published to date

741 enrolled496 with complete profile293 with actionable alterations195 randomized (98 lost at screening)

Figure 4: Progression-free survival by molecular pathway

Progression-free survival in patients with molecular alterations in the hormone receptor pathway (A), PE(KUNCT) mTOR pathway (B), and RAT/MEK pathway (C).

Bioinformatic estimate of biomarker-positive populations in Genomics-driven trials using Precision Trial Designer (PTD)

L.Mazzarella1, G.Melloni2, A.Guida 1, G.Curigliano1, E.Botteri3, A.Esposito1, M.Kamal4, C. Le Tourneau4, L. Riva5, P. Pelicci6

1New Drug Development, Istituto Europeo di Oceologia, Milan, IT, 2Biomedical Informatics, Harvard Medical School, Boston, MA, US, 3Norwegian National Advisory Unit on Women's Health, Onio University Hosp., Onlo, NO, 4Dept of Medical Oncology, Institut Carie, Paris, FR, 5Center for Genomic Science, Italian Institute of Technology, Milan, IT, 6Department of Experimental Oncology, European Institute of Oncology, Milan, IT

By histology

By drug

Quantifying the advantage of an umbrella trial

we simulated a 10-arm (inhibitors of PARP, NOTCH, MET, HER2, FGFR, EGFR, BRAF, ALK, AKT and immune checkpoints) imaginary trial on multiple cancers, based on genetic alterations suggested by the past Molecular Analyses for Personalized medicine (MAP) conference.

SHARP: precision medicine trial on metastatic breast cancer

Bicalutamide: 6%

NCI Patient-Derived Models Repository: Multiple Avenues for

Discovery Develop PDX Models and PDC (Tumor & Fibroblast) Lines DNA, RNA, Protein, WES, RNASeq, Targeted Sequencing

NCI Patient-Derived Models Repository (PDMR) **Initial Distribution Types**

Urothelial/Bladder

 PDX Pathology Confirmed •Whole Exome Sequence, NCI Cancer Gene Panel, and RNASeq Available •Human Pathogen Screening and STR Profile

Available

 Confirmed Re-growth from Cryopreserved Fragments

Distribution Groups (NL-100 Models)
Distribution Groups (N=100 Models)
Colorectal Adenocarcinoma
Head & Neck Squamous Cell Carcinoma
 Pharyngeal, Laryngeal, Lip/oral cavity, NOS
Urothelial/Bladder
Melanoma
Pancreatic Adenocarcinoma
Lung Squamous Cell Carcinoma
Adult Soft Tissue Sarcoma
•Ewings, Leiomyosarcoma, Malignant fibro. histiocytoma,
Fibrosarcoma, Non- Rhabdosarcoma NOS,
Rhabdosarcoma NOS
Renal
Upper GI
•Stomach, Sm. Intest, GIST, Appendiceal
· · · · · · · · · · · · · · · · · · ·

Personalizing treatment using integrated in vivo-in silico approaches: cell lines

A Landscape of Pharmacogenomic Interactions in Cancer

Francesco Iorio,^{1,2,20} Theo A. Knijnenburg,^{3,4,20} Daniel J. Vis,^{4,20} Graham R. Bignell,^{2,20} Michael P. Menden,^{1,5,20} Michael Schubert,¹ Nanne Aben,^{4,6} Emanuel Gonçalves,¹ Syd Barthorpe,² Howard Lightfoot,² Thomas Cokelaer,^{1,2,17} Patricia Greninger,⁷ Ewald van Dyk,⁴ Han Chang,⁶ Heshani de Silva,⁸ Holger Heyn,⁹ Xianming Deng,^{10,11,18} Regina K. Egan,⁷ Qingsong Liu,^{10,11} Tatiana Mironenko,² Xeni Mitropoulos,⁷ Laura Richardson,² Jinhua Wang,^{10,11} Tinghu Zhang,^{10,11} Sebastian Moran,⁹ Sergi Sayols,^{9,19} Maryam Soleimani,² David Tamborero,¹² Nuria Lopez-Bigas,^{12,13} Petra Ross-Macdonald,⁸ Manel Esteller,^{6,13,14} Nathanael S. Gray,^{10,11} Daniel A. Haber,^{7,15} Michael R. Stratton,² Cyril H. Benes,⁷ Lodewyk F.A. Wessels,^{4,6,16,21} Julio Saez-Rodriguez,^{1,5,21} Ultan McDermott,^{2,21,*}

Personalizing treatment using integrated in vivo-in silico approaches: organoids

Pauli et al Cancer Disc 2017

Take home messages

- Old school large randomized phase trials are no more feasible due to fragmentation of the target population
- Efficacy demonstration for new drugs is based on sophisticated trial designs
 - Basket and umbrella trials still have big attrition rate issues
- Genetic biomarkers are increasingly accessible due to declining costs
- Non-genetic, functional biomarkers are increasingly accessible and will allow to even further personalize treatment

Luca.mazzarella@ieo.it

GRAZIE DELL'ATTENZIONE