

Mario Giuliano Università degli Studi di Napoli Federico II

ESMO 2016: the "record meeting"

- ESMO 2016 has broken records of attendance
 - 20.522 participants
- 1.640 studies presented, including 47 late-breaking trials
 - A record number of research published in major medical journals such as NEJM, The Lancet Oncology and JAMA
- Several practice-changing studies with positive results
 - ENGOT-OV16/NOVA concerning landmark study for patients with recurrent ovarian cancer
 - Keynote-024 and Keynote-021 presenting new immunotherapeutic options for advanced lung cancer
 - Monaleesa 2 in HER2 negative advanced breast cancer
 - EORTC 18071 with good survival results for patients with stage III melanoma
 - Checkmate 141 study of patient reported outcomes in head and neck cancers

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

- Neoadjuvant therapy
 - Interim results of neoMONARCH study
- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab
- Molecular marker assays and patient outcome
- Identification of higher risk population

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

FALCON Trial

Study Design

- Postmenopausal women
- Locally advanced or metastatic breast cancer
- ER+ and/or PgR+
- Endocrine therapy-naïve

Stratification factors:

- Prior chemo for MBC
- Measurable disease
- Locally advanced vs. MBC

Fulvestrant 500 mg

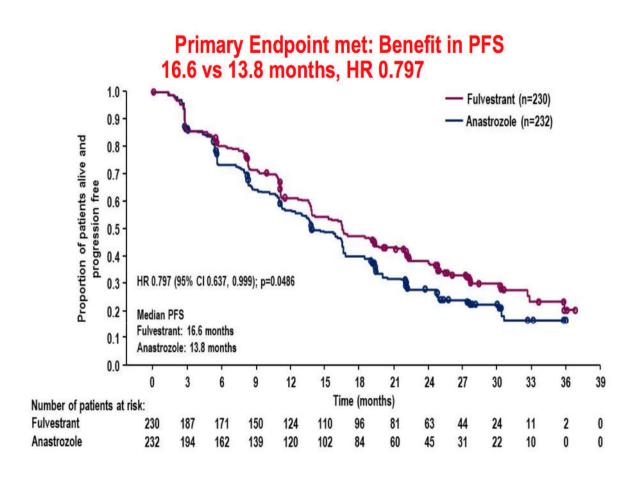
(500 mg IM on days 0, 14, 28 then every 28 days)

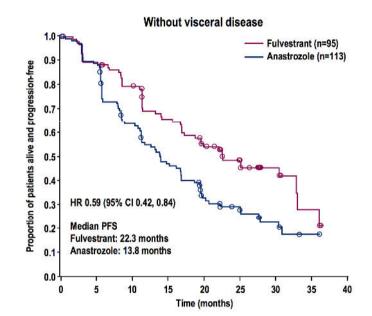
+ Placebo

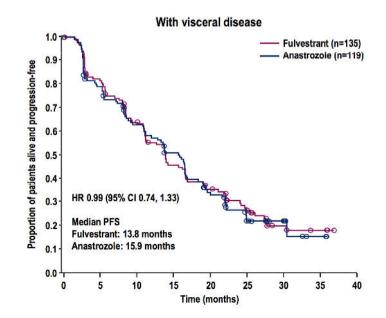
Anastrozole 1 mg + Placebo

Primary endpoint: PFS

Secondary: OS, ORR, CBR, DoR, DoCB, HRQol, Safety

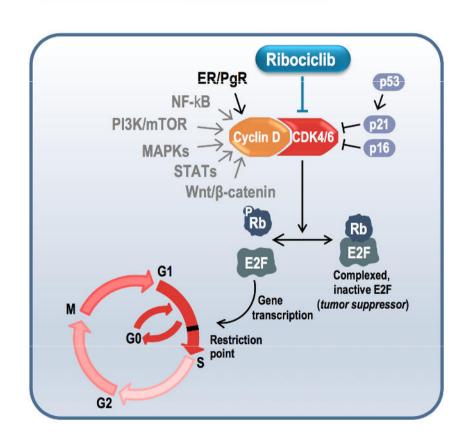



- N = 450 patients for 306 progression events;
- If true PFS HR was 0.69 this would provide 90% power at the 5% two-sided level (log-rank test)
- Subgroup analysis of PFS for pre-defined baseline covariates


	Total (N=462)			
Any prior chemotherapy, n (%)	160	(34.6%)		
Advanced disease	79	(17.1%)		
Adjuvant / neoadjuvant	62 / 27	(13.4 %/ 5.8%)		
Receptor status, n (%)				
ER+ / PgR+	354	(76.6%)		
ER+ / PgR-	87	(18.8%)		
Unknown	17	(3.7%)		
Overall disease classification, n (%)				
Locally advanced disease	60	(13.0%)		
Metastatic disease	402	(87.0%)		
Visceral disease, n (%)	254	(55.0%)		
Measurable disease, n (%)	389	(84.2%)		

FALCON Trial

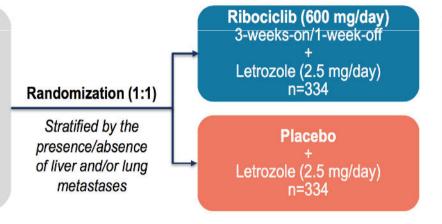
Results



Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

The Role of CDK4/6 in HR+ Breast Cancer

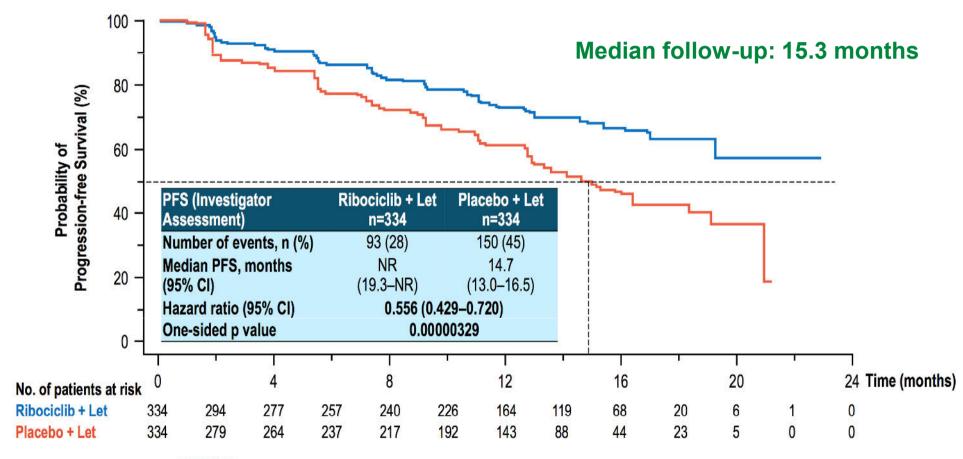


- Rb binding inactivates E2F, which regulates genes important for transition through the G1/S cell cycle restriction point^{1,2}
- Phosphorylation of Rb by CDK4/6 leads to dissociation of E2F from Rb and cell cycle progression^{1,2}
- Increased CDK4/6 activity driven by perturbations of other pathways is associated with endocrine therapy resistance^{1,2}

MONALEESA-2 Study Design

- Postmenopausal women with HR+/HER2– advanced breast cancer
- No prior therapy for advanced disease
- N=668

Primary endpoint


 PFS (locally assessed per RECIST v1.1)

Secondary endpoints

- Overall survival (key)
- Overall response rate
- · Clinical benefit rate
- Safety
- Tumor assessments were performed every 8 weeks for 18 months, then every 12 weeks thereafter
- Final analysis planned after 302 PFS events
 - 93.5% power to detect a 33% risk reduction (hazard ratio 0.67) with one-sided α=2.5%
- Interim analysis planned after ~70% PFS events
 - Two-look Haybittle–Peto stopping criteria: hazard ratio ≤0.56 and p<0.0000129

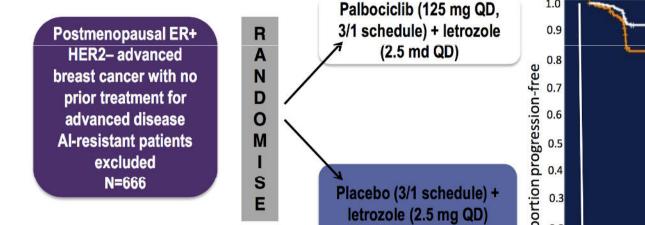
MONALEESA-2 Interim Analysis on Primary Endpoint

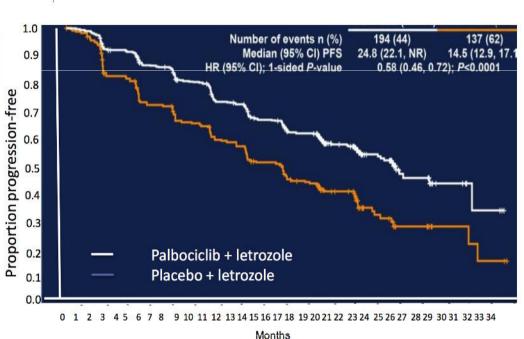
PFS results by independent central review: hazard ratio 0.592 (95% CI: 0.412–0.852; p=0.002)

Let, letrozole; NR, not reached.

Hortobagyi G et al ESMO 2016 LBA 1

MONALEESA-2


Subgroup Analysis

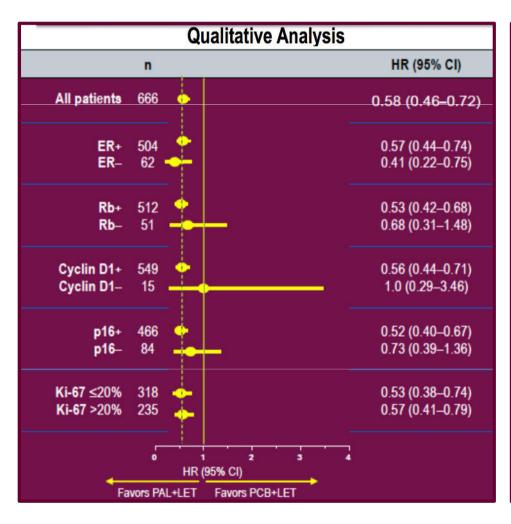

Sub	group	n (%)	Favors Ribociclib + Let	Favors Placebo + Let	Hazard Ratio (95% CI)
All patients		668 (100)	н ф н		0.556 (0.429–0.720)
Age	<65 years ≥65 years	373 (56) 295 (44)			0.523 (0.378–0.723) 0.608 (0.394–0.937)
Race	Asian Non-Asian	51 (7.6) 568 (85)	-		0.387 (0.166–0.906) 0.607 (0.459–0.804)
ECOG PS	0 1	407 (61) 261 (39)			0.588 (0.422–0.820) 0.528 (0.348–0.801)
ER/PgR status	ER+ and PgR+ Other	546 (82) 122 (18)	<u> </u>		0.616 (0.461–0.823) 0.358 (0.198–0.647)
Liver or lung involvement	ent No Yes	295 (44) 373 (56)	<u> </u>		0.547 (0.360–0.832) 0.569 (0.409–0.792)
Bone-only disease	No Yes	521 (78) 147 (22)		⊣	0.541 (0.405–0.723) 0.690 (0.381–1.249)
De novo disease	No Yes	441 (66) 227 (34)	<u> </u>		0.603 (0.447–0.814) 0.448 (0.267–0.750)
Prior (neo)adjuvant endocrine therapy	NSAI and others* Tamoxifen or exemestane None	53 (7.9) 293 (44) 322 (48)		ł	0.448 (0.193–1.038) 0.570 (0.393–0.826) 0.570 (0.380–0.854)
Prior (neo)adjuvant che	emotherapy No Yes	377 (56) 291 (44)			0.548 (0.373–0.806) 0.548 (0.384–0.780)
HAGEN CONS	ress		0.1 0.556 1	10	

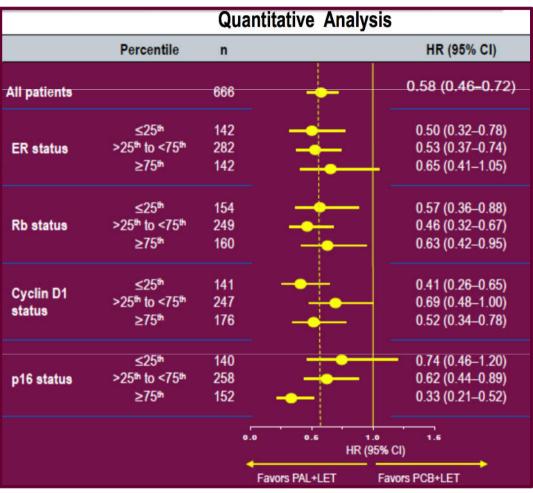
 ^{*}Excludes patients who had received tamoxifen.

PALOMA-2 Biomarker Analysis

· Primary endpoint: PFS (investigator assessed)

2:1

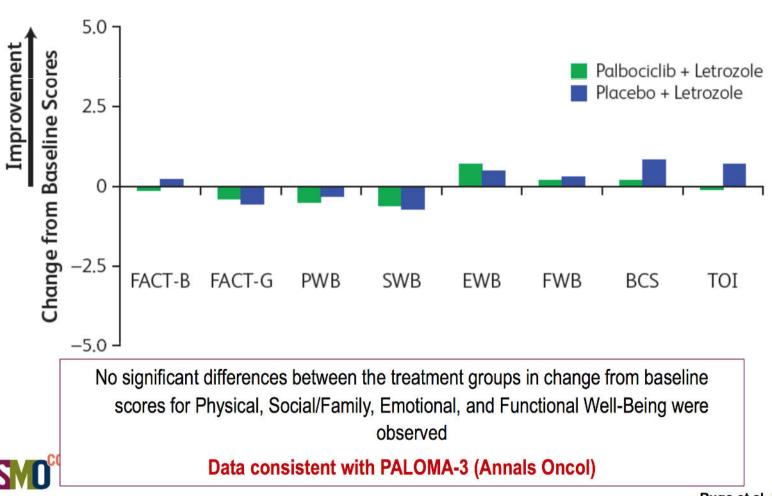

Secondary endpoints: Response, OS, safety, biomarkers, PROs



Finn R, et al. ASCO 2016, Abstract 504 (oral abstract)

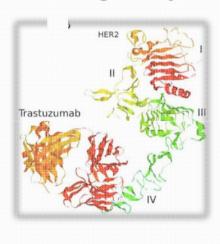
PALOMA-2

Subgroup Analysis: PFS by biomarker



PALOMA-2

Impact of Palbociclib on Quality of Life

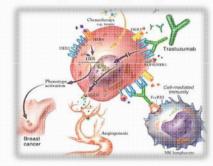

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

Biological Complexity of Monoclonal Antibodies

Intrinsic Complexity

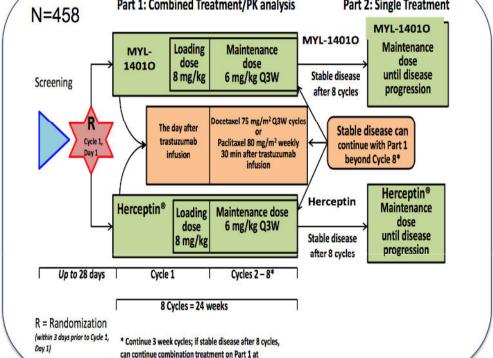
- Size
- Structure
- Physiochemistry
- Heterogeneity


Additional Complexity

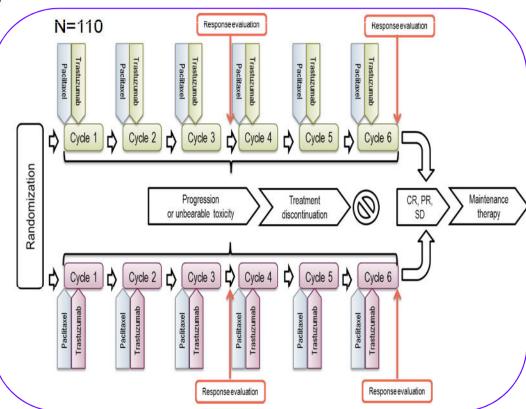
- Manufacturing process
- Formulation
- Handling
- Route of administration

Immunogenicity

- Host related: genetic predisposition by MHC alleles, immunosuppression
- Product related: Structural properties, glycosylation, impurities, formulation, storage, aggregates



Trastuzumab Biosimilar Studies


Design

Heritage Study – Trastuzumab MYL-14010 Biosimilar

Part 1: Combined Treatment/PK analysis Part 2: Single Treatment

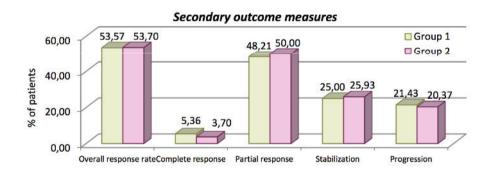
Trastuzumab BCD-022 Biosimilar

Shustova M et Al., ESMO 2016. Abstract 224 PD

Investigator's discretion

Trastuzumab Biosimilar Studies

Results


Heritage Study – Trastuzumab MYL-14010 Biosimilar

	MYL-14010 + Taxane N= 230	Herceptin + Taxane N= 228			
Overall response rate n (%)	160 (69.6)	146 (64.0)			
95% CI	(63.62, 75.51)	(57.81, 70.26)			
Ratio of ORR: MYL- 14010/Herceptin (FDA)	1	1.09			
90% CI	(0.974, 1.211)				
95% CI	(0.954, 1.237)				
Difference in ORR: MYL- 1401O-Herceptin (EMEA)	5.53				
90% CI	(-1.70), 12.69)			
95% CI	(-3.08, 14.04)				

Rugo H et Al., ESMO 2016. Abstract #LBA

Trastuzumab BCD-022 Biosimilar

Parameter	Group 1 (n = 54)			Group 2 (n = 56)			
Parameter	n	n % (95% CI)		% (95% CI)	р		
ORR	30	53,57 (40,70 - 65,98)	29	53,70 (40,60 - 66,31)	0,8622		
Difference in ORR		-0,13% (-19,83%	– 18 ,	35%)	0,002		
¹ Yates-corrected Pearson's χ² test							

Shustova M et Al., ESMO 2016. Abstract 224 PD

Advanced Breast Cancer

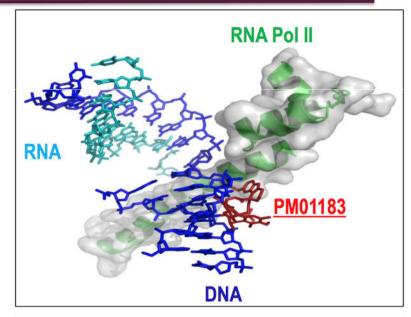
- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

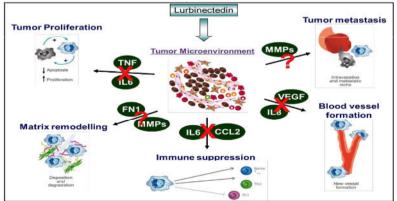
Phase II, PM01183 Monotherapy In Metastatic Breast Cancer

Lurbinectedin (PM01183) is a trabectedin analog:

- Inhibits active transcription (RNA Pol II degradation) (1):
 - Generates double strand DNA breaks
 - Affects tumor microenvironment

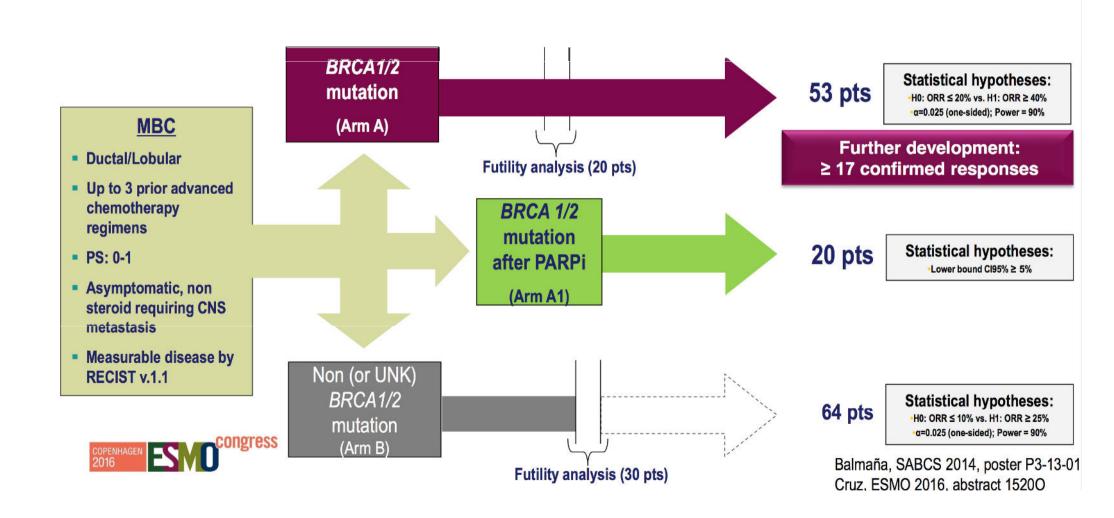
Deficient homologous recombination system favors PM01183-induced apoptosis (2)


Antitumor activity observed in patients resistant to platinum compounds (3)


Two Phase III trials are currently ongoing, one as a single agent in platinum resistant ovarian cancer, and one in combination with doxorubicin in 2nd line SCLC

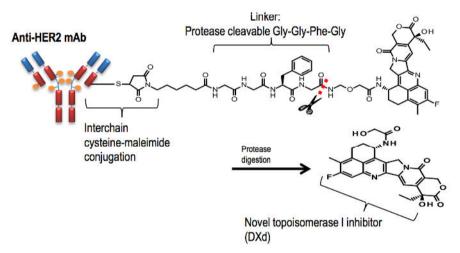
2. Allavena P. et al, Proc AACR 2016

3. Poveda A. et al. ASCO 2014, oral presentation



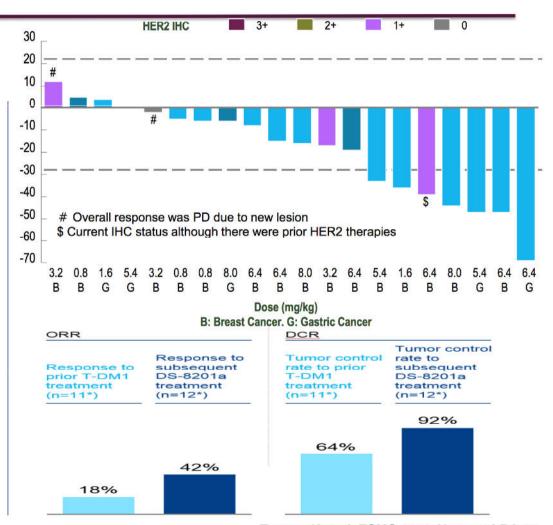
Phase II, PM01183 Monotherapy In Metastatic Breast Cancer (MBC) – 7mg Flat Dose Amended To 3.5mg/m2

Response Data For Specific Subpopulations


	Prior Platinum		BRCA		Hormone Status		Prior Chemo	
	No (n: 27)	Yes (n: 27)	1 (n: 31)	2 (n: 23)	Triple Negative (n: 33)	HR+ (n: 21*)	0-1 (n: 31)	2-3 (n: 23)
ORR (95% CI)	56% (35.3-55.6)	26% (11.1-25.9)	26% (11.9-25.8)	61% (38.5-60.9)	36% (13.3-27.3)	48% (38.4-81.9)	52% (33.1-69.9)	26% (10.2-48.4)
Duration of Response (95% CI)	10.2 m (3.0-13.5)	5.9 m (2.8-12.8)	6.6 m (2.8-12.8)	6.7 m (3.4-13.5)	7.7 m (2.8-12.8)	6.7 m (2.8-13.4)	8.5 m (3.0-12.8)	3.4 m (2.8-20.5)
Disease control rate	25 (93%)	19 (70%)	23 (74%)	22 (96%)	26 (79%)	19 (90%)	27 (87%)	18 (78%)
Clinical benefit (CR+PR+SD ≥ 3 mo)	19 (70%)	14 (52%)	14 (45%)	19 (83%)	29 (88%)	14 (67%)	21 (68%)	12 (52%)

^{*} Including 2 patients also HER-2 +

Single Agent Activity Of Her2 Antibody Drug-Conjugate DS-8201A



Structure of DS-8201a compared with T-DM1

	DS-8201a	T-DM1		
Antibody	Anti-HER2 Ab	Trastuzumab		
Payload	Topoisomerase I inhibitor (DXd)	Tubulin inhibitor (DM1)		
DAR*	7-8	3.5		

^{*} DAR: Average drug-to-antibody Ratio

Tamura K et al. ESMO 2016 Abstract LBA 17

Pathways Altered In Breast Carcinomas

N=8564

			· · · · · · · · · · · · · · · · · · ·					¥
	ERBB Pathway	Hormone Therapy Resistant (ESR1 Mut)	HR Deficient	IO Sensitive	PI3K/AKT/mTOR Pathway	FGFR Pathway	CDK Pathway	Other Kinases
Total Cases	1294	796	1266	419	4375	2650	2685	630
% Total Cases	15%	9%	15%	5%	51%	31%	31%	7%
Unique Cases	274	109	309	48	1442	226	231	87
% Unique Cases	3%	1%	4%	1%	17%	3%	3%	1%
Therapy Examples	Trastuzumab, Pertuzumab, Afatinib, Lapatinib, Neratinib	[Fulvestrant, Tamoxifen]	Olaparib	Pembrolizumab, Nivolumab, Atezolizumab, Ipilumumab	Everolimus, Temsirolimus	Pazopanib, Ponatinb	Palbociclib	Sorafenib, Regorafenib, Dabrafenib, Vemurafenib, Crizotinib, Cabozantinib, Sunitinib

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

- Neoadjuvant therapy
 - Interim results of neoMONARCH study
- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab
- Molecular marker assays and patient outcome
- Identification of higher risk population

NeoMONARCH

Study Design

neoMONARCH: Phase II study design

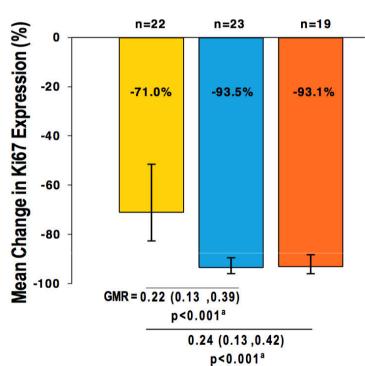
- Abemaciclib 150 mg BID is tolerable when dosed on a continuous schedule with endocrine therapy¹
- The most common adverse event has been diarrhea
 - Typically occurred within the first 7 days of treatment
 - Manageable with use of loperamide or dose reduction
- Loperamide was administered prophylactically for the first 28 days then at discretion of investigator

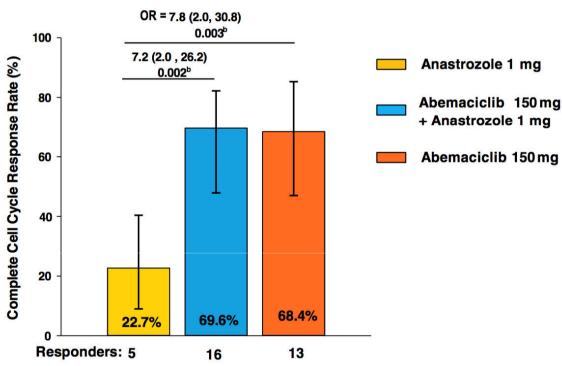
Post-menopausal women (N=220) HR+, HER2breast cancer stage: I (T ≥1 cm), II, IIIA or IIIB suitable for neoadjuvant endocrine therapy Core biopsy at baseline Randomization Abemacicliba 150 mg Q12H Abemacicliba 150 mg Anastrozole 1 mg QD + Anastrozole 1 mg QD Q12H Core biopsy after 2 weeks of treatment **Primary endpoint:** Compare the change from baseline in Ki67 expression after 2 weeks of therapy Abemacicliba 150 mg Q12H + Anastrozole 1 mg QD Core biopsy after 14 weeks of treatment^b Surgery (optional)

¹Patnaik A et al. Cancer Discovery 2016;6:740-5

Abbreviations: HER2 = human epidermal grow th factorreceptor 2; HR = hormone receptor; Q12H = every 12 hours; QD = once daily a Participants receive loperamide with each dose of abemaciclib

Participants who experience benefit following 14 weeks may remain on neoadjuvant therapy for up to 8 additional weeks


NeoMONARCH

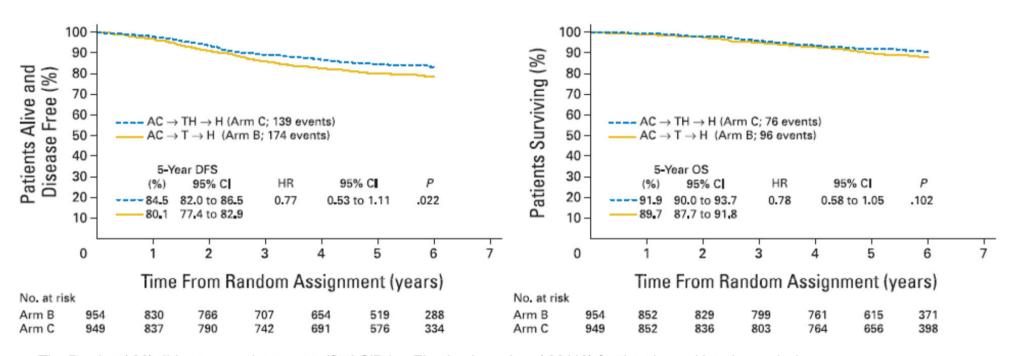

Change in Ki67

Study met the boundary for statistical significance at the interim analysis (boundary p < 0.03)

Geometric Mean Change

Complete Cell Cycle Arrest Ki67 index < 2.7% at 2 weeks

Abbreviations: GMR = geometric mean ratio, OR = odds ratio

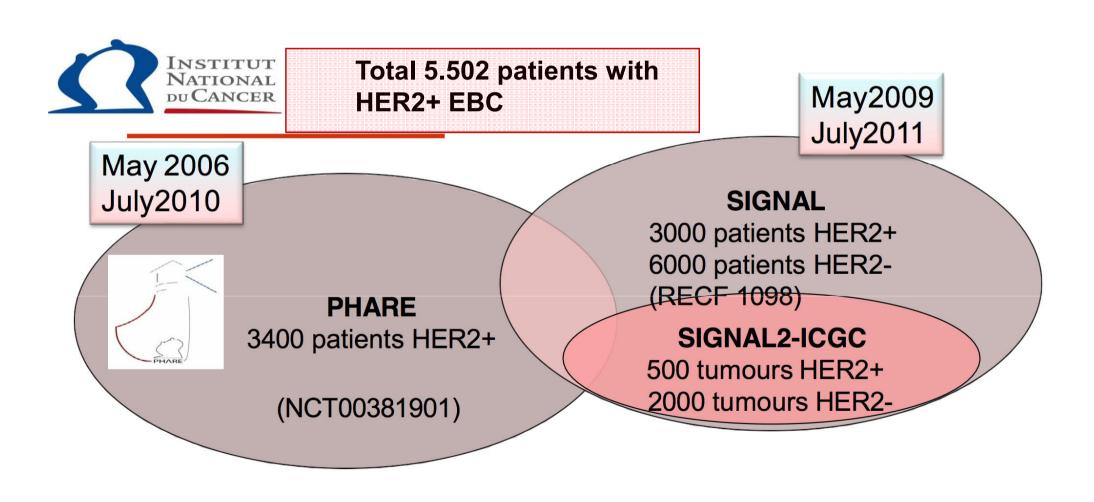

aGeometric Mean Ratio (GMR), 2-sided 90% confidence interval (CI), p-value, p-value are based on a one-sided hypothesis test from a linear model w ith treatment, PR status (positive versus negative/unknown) and tumor size (<2 cm versus ≥2 cm and <5 cm versus ≥5 cm) as fixed effects. bA responder is identified as a patient with a ln(Ki67) value of less than 1. Odds ratio (OR), 2-sided 90% Cl, p value, p-value is calculated by Fisher's Exact test of a one-sided hypothesis.

Advanced Breast Cancer

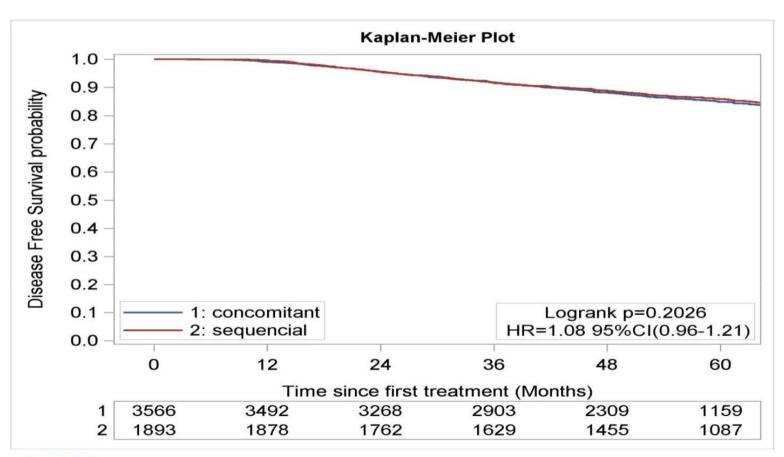
- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

- Neoadjuvant therapy
 - Interim results of neoMONARCH study
- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab
- Molecular marker assays and patient outcome
- Identification of higher risk population

Sequential vs. Concurrent Trastuzumab in EBC NCCTG Trial



The P value (.02) did not cross the prespecified O'Brien-Fleming boundary (.00116) for the planned interim analysis


Sequential and concomitant adjuvant trastuzumab in HER2+ EBC

Results from the SIGNAL/PHARE prospective cohort

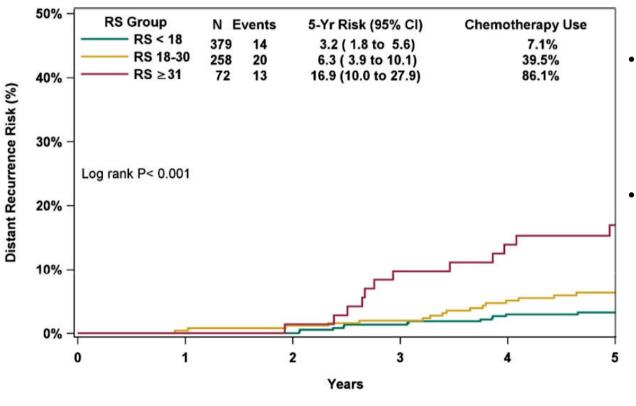
Sequential and concomitant adjuvant trastuzumab in HER2+ EBC

Results from the SIGNAL/PHARE prospective cohort

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

- Neoadjuvant therapy
 - Interim results of neoMONARCH study
- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab
- Molecular marker assays and patient outcome
- Identification of higher risk population


FIRST PROSPECTIVELY-DESIGNED OUTCOME STUDY IN ESTROGEN RECEPTOR (ER)+ BREAST CANCER (BC) PATIENTS (PTS) WITH N1MI OR 1-3 POSITIVE NODES IN WHOM TREATMENT DECISIONS IN CLINICAL PRACTICE INCORPORATED THE 21GENE RECURRENCE SCORE (RS) RESULT

S.M. Stemmer, et al.

Abstract: 3040 esmo.org

Risk of Distant Recurrence by RS Group

- The overall number of patients with distant recurrence by RS risk group (Low/Intermediate/High): 14/379, 20/258, 13/72, respectively
- The rate of distant recurrence in the low RS group was 3.2% within 5 years compared to 16,9% for the high RS group

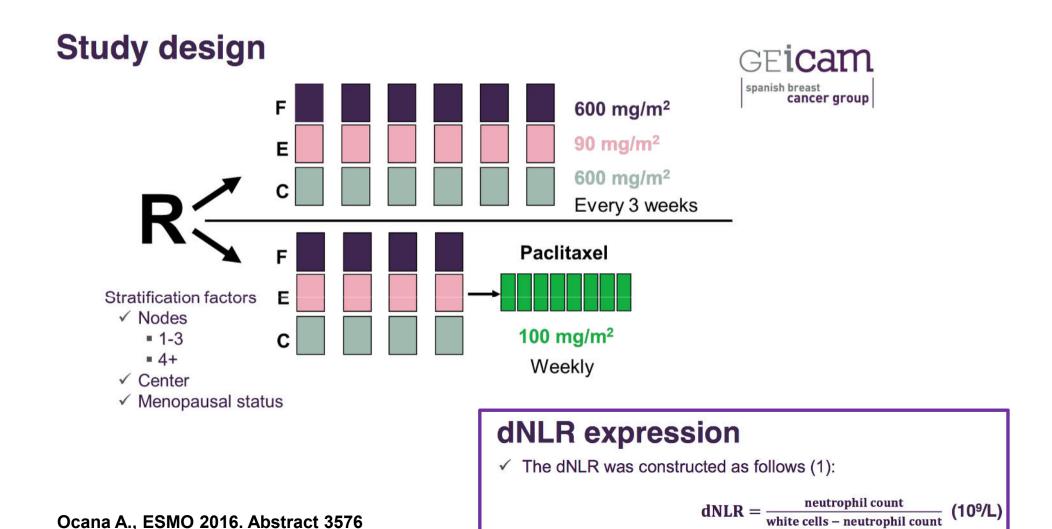
BREAST CANCER-SPECIFIC SURVIVAL IN PATIENTS WITH LYMPH NODE-POSITIVE HORMONE RECEPTOR POSITIVE INVASIVE BREAST CANCER AND 21-GENE RECURRENCE SCORE RESULTS IN THE SEER DATABASE

D.P. Miller, et al.

Abstract: 4013 esmo.org

5-year Breast Cancer-specific Survival (95% CI), by RS Group and Number of Positive Lymph Nodes – Total N=6,768

	RS <18 (N=3,919; 23.8% CT Use*)			18-30 9.0% CT Use*)	RS ≥31 (N=469; 77.0% CT Use*)		
# Positive Nodes	n	5-y BCSS	n	5-y BCSS	n	5-y BCSS	
Micrometastases	1,644	98.9% (97.4%, 99.6%)	998	99.1% (97.9%, 99.6%)	178	84.0% (74.1%, 90.4%)	
1	1549	99.4% (98.4%, 99.8%)	893	95.9% (92.6%, 97.7%)	178	93.3% (85.2%, 97.0%)	
2	458	97.1% (91.3%, 99.0%)	268	97.8% (91.4%, 99.4%)	45	87.0% (54.4%, 96.9%)	
3	139	95.1% (87.0%, 98.2%)	104	87.2% (65.2%, 95.7%)	29	89.8% (63.5%, 97.5%)	
4+	129	92.8% (73.5%, 98.2%)	117	83.9% (69.5%, 91.9%)	39	65.4% (40.9%, 81.8%)	

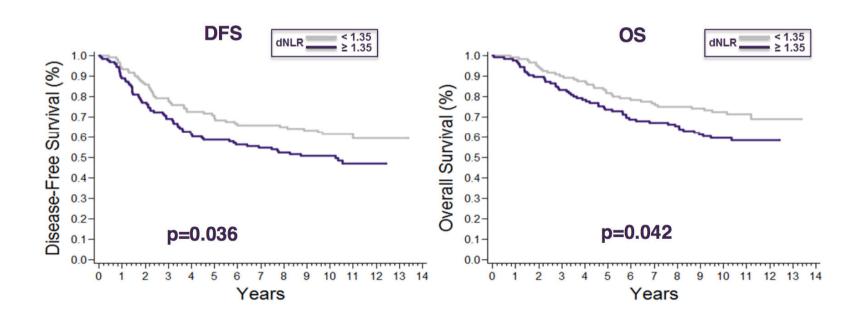

*Chemotherapy (CT) use reported as 'yes' (vs. 'no/unknown')

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

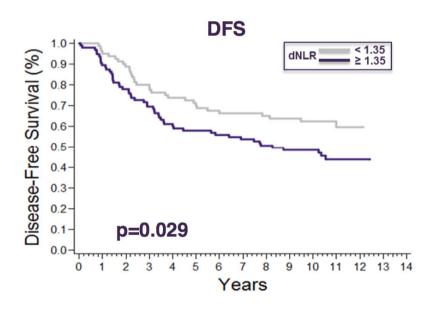
- Neoadjuvant therapy
 - Interim results of neoMONARCH stud
- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab
- Molecular marker assays and patient outcome
- Identification of higher risk population

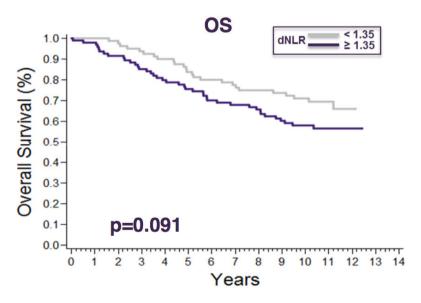
Prognostic Role for Derived Neutrophil-to-Lymphocyte Ratio in EBC


Prognostic Role for Derived Neutrophil-to-Lymphocyte Ratio in EBC

Association of dNLR with outcome

✓ For the non luminal subgroups (HER2-enriched, basal-like), elevated levels of dNLR (median cut-off) were associated with worse prognosis regardless of treatment arm.


Prognostic Role for Derived Neutrophil-to-Lymphocyte Ratio in EBC


Association of dNLR with outcome

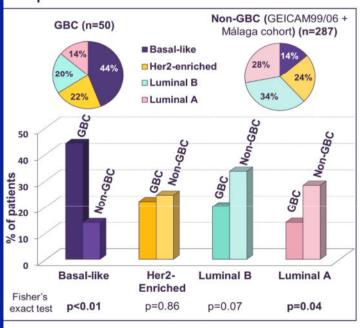
By PAM50 subtypes

✓ For the HER2-enriched subgroup, elevated dNLR was significantly associated with DFS and non-significantly associated with OS regardless of treatment arm.

GESTATIONAL BREAST CANCER: DISTINCTIVE MOLECULAR AND CLINICO-EPIDEMIOLOGICAL FEATURES. GEICAM/2012-03 STUDY

J. de la Haba, et al.

Abstract: 3679



Gestational BC: Distinctive Molecular and Clinico-Epidemiological Features

GEICAM/2012-03 Study

GEICAM/2012-03 Results

 GBC patients showed a more aggressive clinico-pathological profile.

Patient of	characteristics	GBC	;		No	n-GBC	
and treatment types n (%)		GEICAM/2012-03		Alamo III		GEICAM/ 9906	Málaga
Mean age	at diagnosis	35		37	7	37	37
Negative	HR	30 (43	3)	330 (24)		33 (16)	27 (28)
Tumor si	Tumor size (T2-T4)		51 (76)		787 (56)		84 (92)
Grade 3	Grade 3		38 (63)		479 (40)		38 (47)
High Ki67	High Ki67 (≥20%)		33 (89)		209 (61)		60 (65)
Family hi	story of BC	32 (47)		296 (25)		NA	NA
Mean age	at first partum	31		26		NA	NA
First	ст*	Neoadj.: Adj.: 1st line ABC:	29 (42)	Neoadj.: Adj.: 1st line ABC	202 (14) 1106 (75) : 54 (4)	Adj.: 293 (100)	Neoadj.: 96 (100)
therapy Only HT		1 (1)		68 (4)		0	0
	No systemic therapy	1 (1)		43 (3)		0	0

treatment; Neoadj.: Neoadjuvant treatment; ABC: Advanced Breast Cancer. *CT combined or not with HT or targeted therapy.

- ✓ Intrinsic subtypes in GBC were 44% Basal-like, 22% Her2-enriched, 20% Luminal B and 14% Luminal A.
- ✓ Basal-like phenotype was enriched (44% vs 14%, p<0.01) and Luminal (A+B) phenotype was less prevalent (34% vs 62%, p<0.01), being more evident in Luminal A than in Luminal B cases.

CONCLUSIONS: Our study suggests that GBC patients have tumors of a particularly aggressive biology, with a higher rate of basal-like subtypes and a lower proportion of luminal subtypes compared to non-GBC patients of similar age.