

Neoadjuvant and adjuvant therapy: Current indications, trials, and patient selection

Andrea Necchi

Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy European Association of Urology – Research Foundation

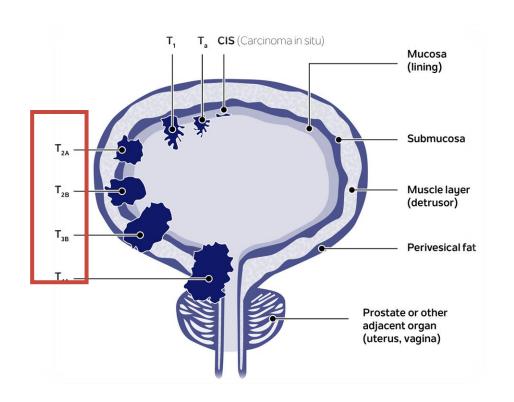
Disclosures

Andrea Necchi:

Consulting or Advisory Role: Company: Roche, Bayer, Merck & Co. Inc., Astra Zeneca, Janssen,

Astellas/Seattle Genetics, Clovis Oncology, BioClin Therapeutics

Travel, Accommodations, Expenses: Company: Roche, Merck & Co. Inc., Janssen, PeerVoice

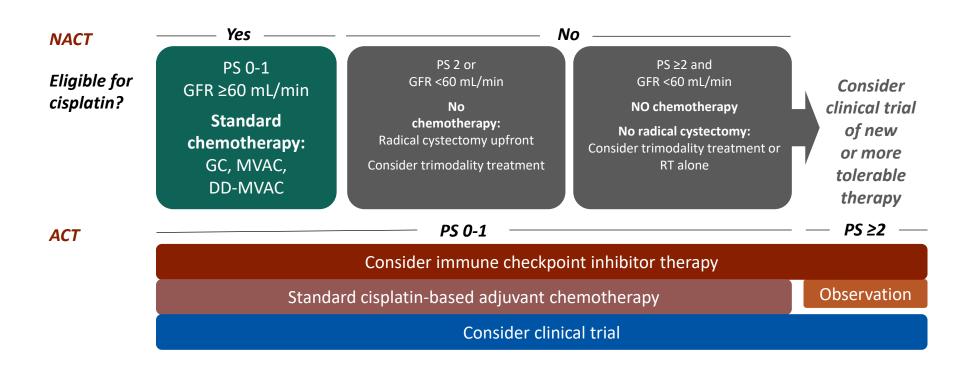

Research Funding (Institution): Company: Merck & Co. Inc., Astra Zeneca

Thomas Powles:

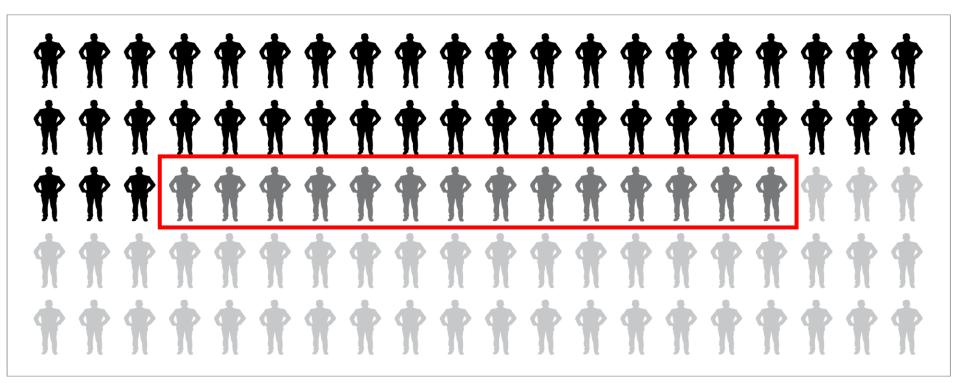
Honoraria: Bristol-Myers Squibb, Merck, Roche/Genentech

Consulting or Advisory role: Astra Zeneca, Bristol-Myers Squibb, Roche/Genentech, Merck, Novartis

Other relationship: Bristol-Myers Squibb, Ipsen

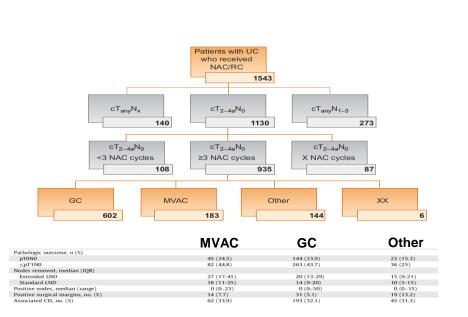

From 2016 White Paper of Bladder Cancer http://www.ecpc.org/da/pressroom/events/icalrepeat.detail/2016/04/20/60/119/launch-of-ecpc-paper-on-bladder-cancer

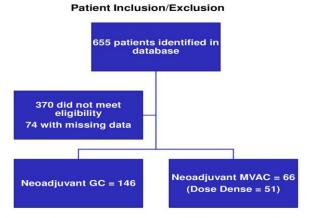
The UC Treatment Landscape Continues to Evolve


¹L, first line; 2L, second line; BCG, Bacillus Calmette-Guerin; CRT, chemoradiation; CTx, chemotherapy; DD-MVAC, dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin; QoL, quality of life; RT; radiation therapy; TURBT, transurethral resection of bladder tumor.

How Emerging Clinical Data Will Impact the European Treatment Algorithm for MIBC

Available at: http://ime.peervoice.com/v/index.html?collection=505202977-2-2&presentationid=p1&Promocode=860#main

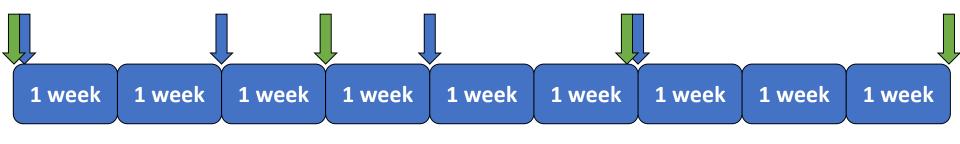

Outcomes at 5 years after neoadjuvant chemotherapy and/or cystectomy in patients with muscle invasive bladder cancer*



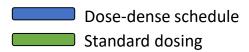
^{*}data are derived from the Southwest Oncology Group (SWOG) trial 8710

Griffiths G, Hall R, Sylvester R, et al. J Clin Oncol. 2011;29:2171-2177 Galsky MD, Domingo-Domenech J. Clin Adv Hematol Oncol 2013;11:86-92

Large retrospective data on the effectiveness of neoadjuvant chemotherapy in MIBC:

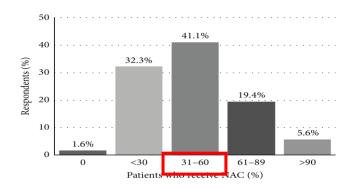


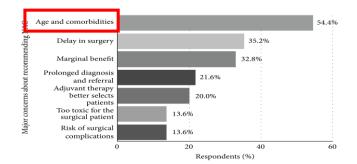
Pathologic complete response rate for MVAC vs GC adjusted for propensity scores*

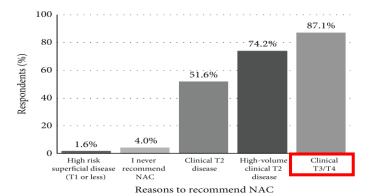

	GC N=146	MVAC† N=66	Overall N=212	OR [95% CI] P-value	OR* [95% CI] P-value	Imputed OR‡ [95% CI] P-value
Path CR Yes No	45 (31%) 101 (69%)	19 (29%) 47 (71%)	64 (30%) 148 (70%)		0.94 [0.48-1.83] P=0.86	0.95 [0.70-1.28] P=0.74

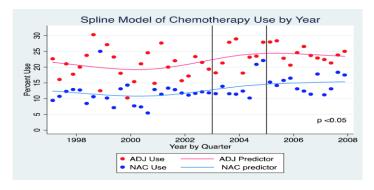
Zargar H, Eur Urol. 2015 Feb;67(2):241-249; Galsky MD, Cancer. 2015 Aug 1;121(15):2586-93

Emerging concepts: neoadjuvant dose-dense chemotherapy




Outcome	Standard dosing	Dose-dense schedule
рТ0	25%	17-28% ^{1,2}
pT<2	40-50%	47-57% ^{1,2}



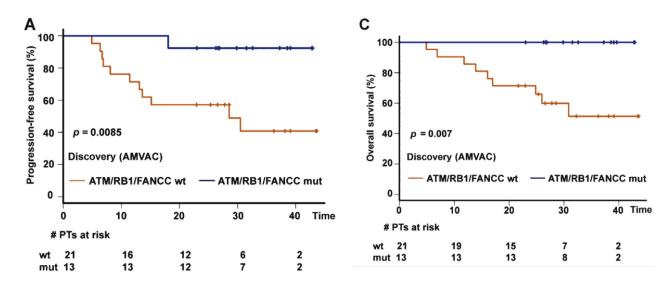
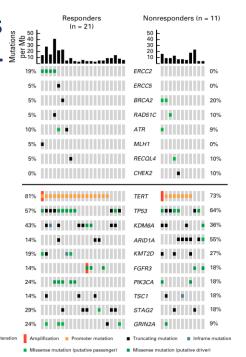

- 1. Choueiri TK, et al. J Clin Oncol 2014;32:1889-1894
- 2. Iyer G, et al. J Clin Oncol 2018 (Epub ahead of print)

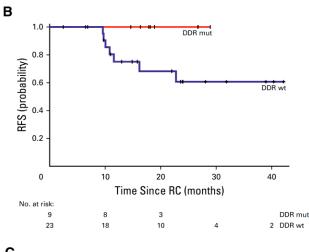
(Shifting) Use of neoadjuvant chemotherapy in the U.S. 1- results from the Urologic Oncology community

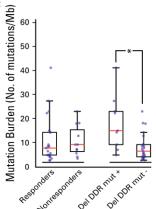
Can we predict response and survival after neoadjuvant chemotherapy?

Biomarker	N	Translational relevance	Reference
ERCC2 mutation	50	Association with pathologic response	Van Allen EM et al, Cancer Discov 2014
ERCC2 mutation	48+54	Association with improved OS in 2 independent cohorts of cisplatin-treated MIBC patients	Liu D et al. JAMA Oncol 2016 Plimack ER et al, Eur Urol 2015 Plimack ER et al, ASCO 2014
ATM/RB1/FANCC mutations	34	Association with improved pT<2 response and OS	Plimack ER et al, Eur Urol 2015
ATM/RB1/FANCC mutations	25	Association with improved pT<2 response	Anari F et al, Eur Urol Oncol 2018
ERBB2 mutations	71	Association with pT0 response	Groenendijk FH et al, Eur Urol 2015
DNA damage response (DDR) gene alterations	46	Association with pT<2 response and RFS with dose- dense GC	Iyer G et al, J Clin Oncol 2018
Single-sample genomic subtyping classifier	343	Basal tumors benefited the most from neoadjuvant chemotherapy administration	Seiler R et al, Eur Urol 2017

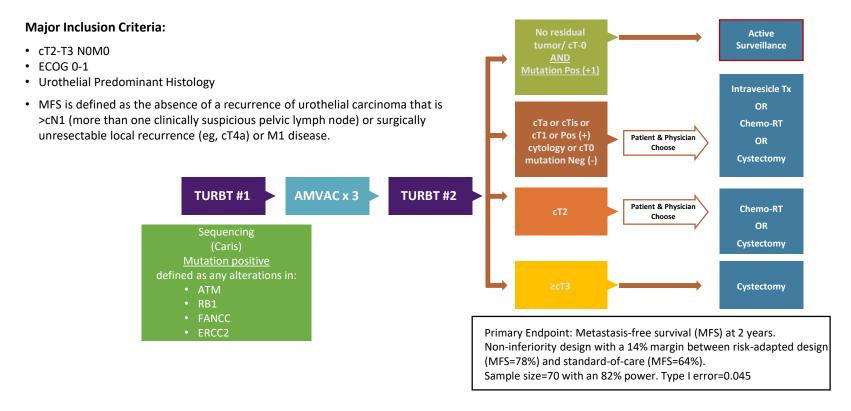
Can we predict response to neoadjuvant chemotherapy? ATM/RB1/FANCC (Discovery and validation cohorts)

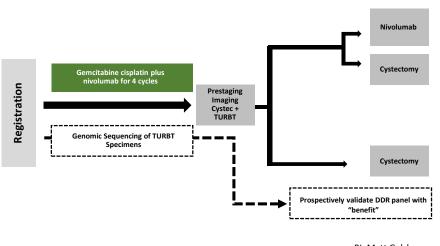




Table 3 - Number of alterations as a predictor of response


Set	Response	RSPs	NRSPs	Mean alterations,	n (median) {range}	p value
	definition	(n)	(n)	NRSPs	RSPs	
Discovery (n = 34)	pT0pN0cM0	14	20	18.65 (16) {8-32}	25.36 (27) {11-39}	0.024
Discovery $(n = 34)$	≤pT1pN0cM0	15	19	18.58 (16) {8-32}	25.00 (26) {11-39}	0.030
Validation $(n = 24)$	pT0pN0cM0	9	15	15.33 (13) {7-29}	22.67 (22) {14-35}	0.018
Validation $(n = 24)$	≤pT1pN0cM0	11	13	16.15 (15) {7-29}	20.36 (21) {8-35}	0.181

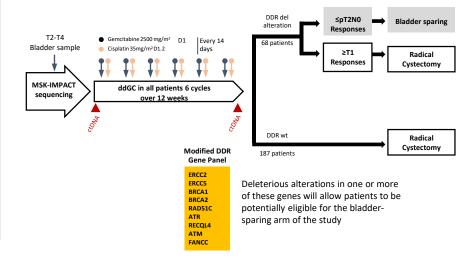
Dose-dense GC and deleterious


DDR genomic alterations (MSK
| MSK-| MS


A Phase II Trial of Risk Enabled Therapy After Initiating Neoadjuvant Chemotherapy for Bladder Cancer (RETAIN BLADDER) NCT02710734

Other risk adapted neoadjuvant studies in development

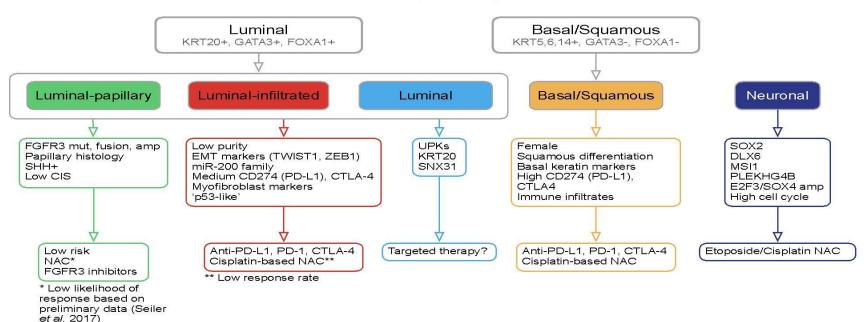
Systemic Therapy: Gem Cis Nivolumab Biomarker: ATM, FANCC, ERCC2, or High TMB


HCRN 16-257: Neoadjuvant gemcitabine, cisplatin, plus nivolumab in patients with muscle-invasive bladder cancer with selective bladder sparing

PI: Matt Galsky

Systemic Therapy: ddGem Gem Cis Biomarker: DDR panel from the literature

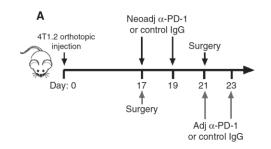
AO31701: A phase II study of dose-dense Gemcitabine plus Cisplatin in patients with muscle-invasive bladder cancer with bladder preservation for those patients whose tumors harbor deleterious DNA damage response (DDR) gene alterations

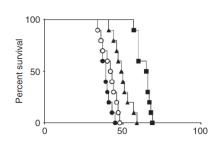


Gupta I, et al. J Clin Oncol 2018; 10.1200/JCO.2017.75.0158. [Epub ahead of print]

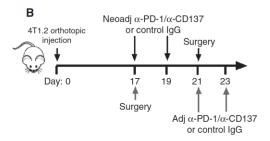
Plimack E, AACR 2018 Oral presentation

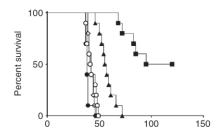
Future Treatment Paradigm for MIBC (?)


TCGA (n=412)



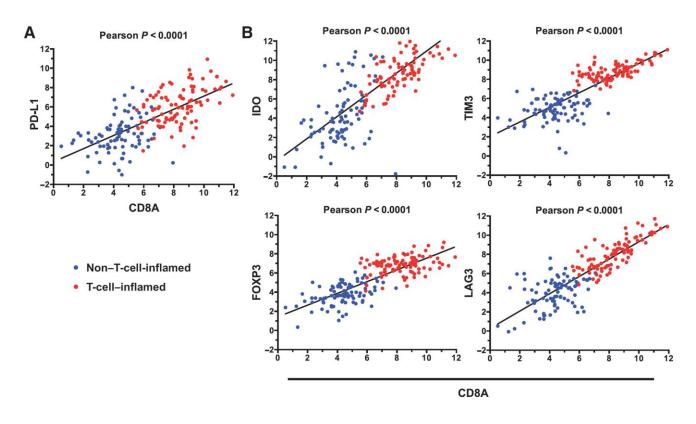
Robertson, Kim, et al Cell 171:540, 2017


Neoadjuvant compared with adjuvant anti-PD-1 + anti-CD137 therapy is more efficacious in eradicating metastatic disease (TNBC model)



Days after 4T1.2 tumor injection

- O Neoadi control IgG
- Adj control IgG
- Adj control ig a...
 Neoadj α-PD-1 P < 0.0001

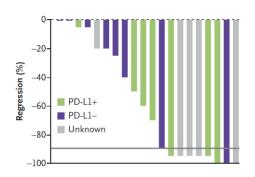


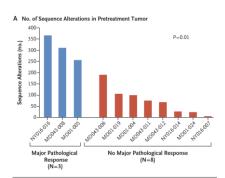
Days after 4T1.2 tumor injection

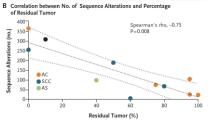
- O Neoadj control IgG
- Adj control IgG
- Neoadj α-PD-1/α-CD137 ¬ P < 0.0001
- ★ Adj α-PD-1/α-CD137—
- φ α-PD-1/α-CD137 No surgery

Liu J, et al. Cancer Discov 2016

Expression of PD-L1 is positively correlated with expression of CD8A and other immune-inhibitory molecules in UBC

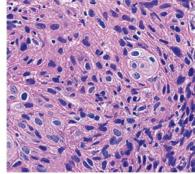


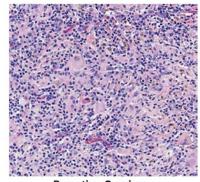

Sweis RF, et al. Cancer Immunol Res 2016;4(7):563-8


ORIGINAL ARTICLE

Neoadjuvant PD-1 Blockade in Resectable Lung Cancer

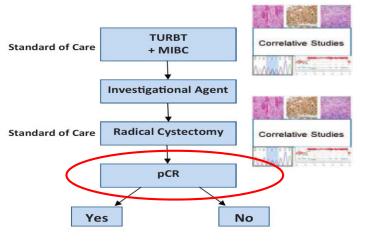
P.M. Forde, J.E. Chaft, K.N. Smith, V. Anagnostou, T.R. Cottrell, M.D. Hellmann, M. Zahurak, S.C. Yang, D.R. Jones, S. Broderick, R.J. Battafarano, M.J. Velez, N. Rekhtman, Z. Olah, J. Naidoo, K.A. Marrone, F. Verde, H. Guo, J. Zhang, J.X. Caushi, H.Y. Chan, J.-W. Sidhom, R.B. Scharpf, J. White, E. Gabrielson, H. Wang, G.L. Rosner, V. Rusch, J.D. Wolchok, T. Merghoub, J.M. Taube, V.E. Velculescu, S.L. Topalian, J.R. Brahmer, and D.M. Pardoll





Pretreatment Imaging

Week 4 (before surgery)



Resection Specimen

Forde PM, et al. N Engl J Med 2018

Chism DD, Oncologist 2013

Kassouf W, Eur Urol 2007 Grossman HB, N Engl J Med 2003 Rosenblatt R, Eur Urol 2011 Sonpavde G, Cancer 2009

Recommend Yes Recommend No Actuality Px≤P0 Correct Incorrect P0 = 20%OK P0<Px<P1 OK P1=40% Px≥P1 Correct Incorrect CR-ITT (95% CI) pCR% Cystectomy Randomized **MVAC** 150 38 126 32% (25-40) CMV 206 27% (21-33) 32 246 Zargar H et al, Eur Urol 2014 GC (retrospective) 23-31 602-146 23-31 24-29 Galsky MD et al, Cancer 2015 MVAC (retrospective) 24-29 183-66

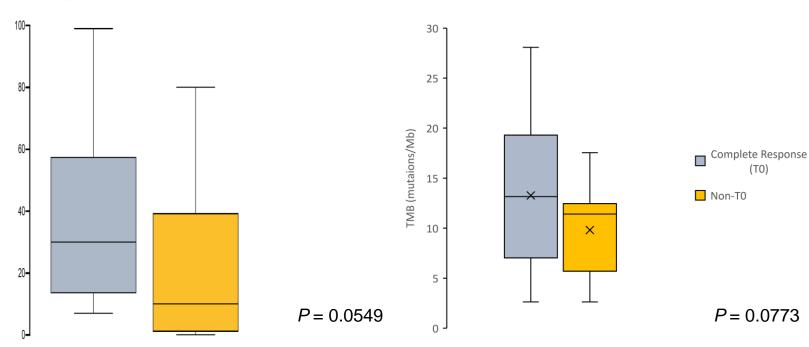
Additional DD-MVAC x 4 cycles in nonresponding pts (investigator choice)

- Fit and planned for cystectomy
- Predominant (i.e. 50% at least) UC histology
- cT≤3bN0 stage
- Residual disease after TURB (surgical opinion, cystoscopy or radiological presence)
- GFR ≥20 ml/min (Cockcroft Gault formula)
- ECOG-PS 0-1

3×3 weekly cycles of pembrolizumab 200 mg IV

Pre-post treatment tissue/blood sample collection for biomarker analyses

Pre-post treatment imaging: multiparametric bladder MRI (mpMRI); ¹⁸FDG-PET/CT scan, T/A CT scan

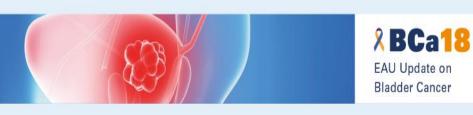

- Cystectomy
- Post-cystectomy management according to EAU guidelines
- Survival data collected until 2-y post cystectomy

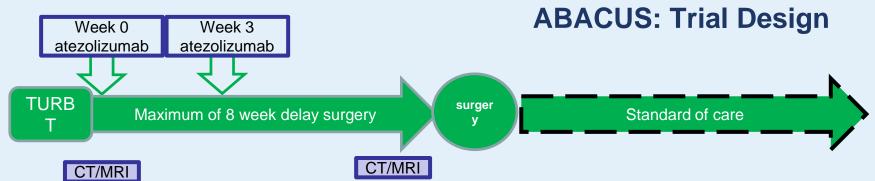
All treated patients N=43

*Pathologic response to Pembro>CT:
• pTispN0: n=2 (40%); pT2pN2: n=1 (20%); pT3pN1: n=2 (40%)

Pathologic response and PD-L1 CPS

Pathologic response and TMB


Median CPS pT0: 30% Median CPS non-pT0: 10%


Median TMB pT0: 13.16 Mut/Mb Median TMB non-pT0: 11.41 Mut/Mb All treated patients N=43

PD-L1 CPS ≥20% N=22

DDR and/or *RB1*GA
N=25

PD-L1 CPS ≥20% AND DDR/*RB1*-GA N=10

Eligibility

- T2-T4aN0M0 bladder cancer
- Transitional histology
- Residual disease post TURBT
- Not fit for / reject cisplatin chemotherapy

Powles T, et al. For presentation at: American Society of Clinical Oncology Annual Meeting; *J Clin Oncol.* 2018;36(Suppl). Abstract 4506.

Endpoints

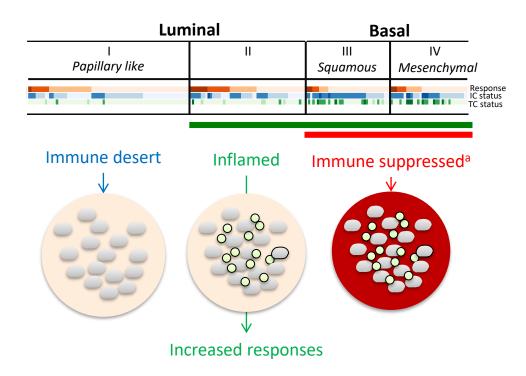
- Co-primary endpoints: pCR (>20%) and increase in CD8 count
- Secondary endpoints: safety and radiological response
- IDMC met in Jan '18, resulting in interim presentation of results

Association

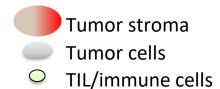
ABACUS: A phase II study investigating the safety and efficacy of neoadjuvant atezolizumab in muscle invasive bladder cancer

- Ph2, single-arm study of atezolizumab (2 cycles, 1200mg Q3W) prior to cystectomy in MIBC
 - Primary endpoint: pCR ≥ 20%; Co-primary endpoint: biomarker analysis on sequential tissue
 - pT0 (23%), Tis (6%), T1 (10%), T2 (21%), T3 (24%), T4 (16%)
 - 39% patients were downstaged to non-muscle invasive disease
 - 17% of pCR patients had pT3/4 disease at baseline
- G3/4 TRAEs (12%)
- G3/4 surgical complications (31%) (n=69)

	All Comers	PD-L1 Positive	PD-L1 Negative
pCR	29%	40%	16%
	(95% CI: 19-42)	(95% CI: 21-62)	(95% CI: 5-34)


pCR, pathological complete response; Q3W, every 3 weeks; TRAE, treatment-related adverse event.

Powles T, et al. For presentation at: American Society of Clinical Oncology Annual Meeting; *J Clin Oncol*. 2018;36(Suppl). Abstract 4506.

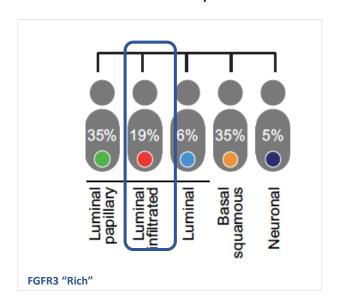

Additional clinical studies evaluating immune checkpoint inhibitors in the neoadjuvant setting before RC

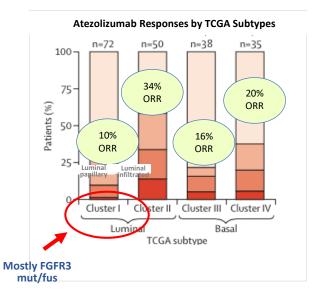
- Pembrolizumab (PANDORE, France)
- Pembrolizumab + Gemcitabine (Hoosier Oncology Group, US)
- Nivolumab/Urelumab (Jonhs Hopkins University, US)
- Nivolumab/Ipilimumab (Netherlands)
- Durvalumab/Tremelimumab (Spain)

IMvigor210: TCGA Subtype in mUC

 IMvigor210 subtypes have distinct tumor-immune landscapes that reflect responsiveness to atezolizumab

TIL, tumor-infiltrating lymphocyte. ^a High myeloid, inflammatory, activated stromal/fibroblast markers. Data cutoff: March 14, 2016.


FGFR alterations are associated with 'non-T-cell-inflamed' bladder tumors


Gene mutation or fusion	Non T-cell-inf	flamed (n=76)	T-cell-inflamed (n=85)		
or fusion	Samples	Variants	Samples	Variants	
FGFR3	11	14	0	0	
FGFR3-TACC3	3	0	0	0	

Sweis RF, et al. Cancer Immunol Res 2016;4:563-568; Choi W, et al. Eur Urol 2017;72:3554-365

FGFR3 expression associated with poor responses in metastatic UC treated with immune checkpoint inhibitors

- "Luminal" group makes up 60% of metastatic bladder cancer
- FGFR3 is predominately in the luminal papillary ("immune desert")
- "Luminal papillary" cancer has very Poor Response to checkpoint inhibitors
- Treatment with anti-FGFR3 may enhance the effectiveness of checkpoint inhibitors

Robertson et al, Cell 2017,171,1-17

Adapted from Rosenberg et al, ASCO 2016

Original EAU and ASCO Endorsement Recommendations and Qualifying Statements

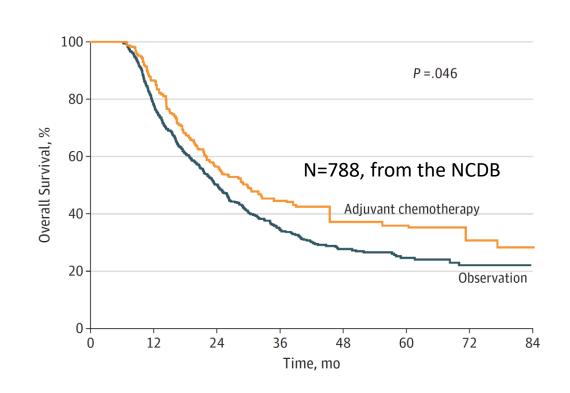
Adjuvant Chemotherapy

Adjuvant cisplatin based combination chemotherapy may be offered to patients with pT3/4 and/or pN+ disease if no neoadjuvant chemotherapy has been given.

Adjuvant cisplatin based combination chemotherapy may be offered to patients with pT3/4 and/or or pN+) disease if no neoadjuvant chemotherapy has been given.

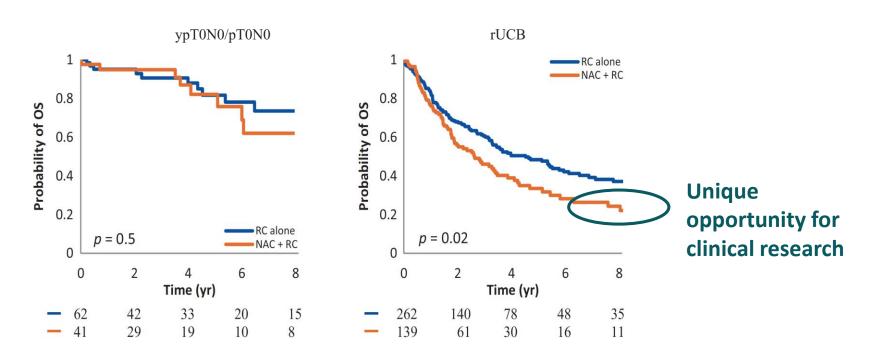
While neoadjuvant chemotherapy is recommended, adjuvant chemotherapy may be offered to high-risk patients who did not receive neoadjuvant treatment

Milowsky MI et al, J Clin Oncol 2016

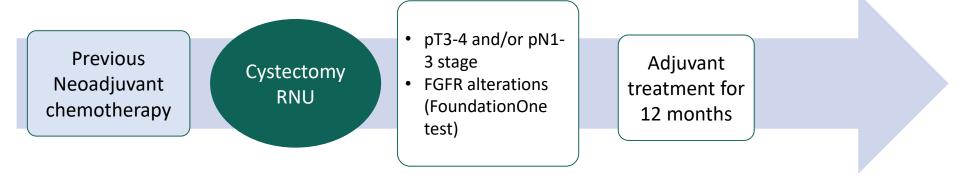

Ph3 Adjuvant/ Registrational Studies in MIBC

IO Therapy/Study	Phase/N	Study Arms	Primary Endpoints	Secondary Endpoints	Estimated Primary Completion Date
Nivolumab ¹ CheckMate 274 (NCT02632409)	Phase 3 N=640	Nivolumab (adjuvant)Placebo	Disease-free survival	 Non-urothelial track recurrence-free survival Disease-specific survival OS 	April 2020
Pembrolizumab ² AMBASSADOR (NCT03244384)	Phase 3 N=739	Pembrolizumab (adjuvant)Observation	Disease-free survivalOS (up to 5 years)	 Disease-free survival and OS in PD-L1⁺ and PD-L1⁻ patients 	February 2019
Atezolizumab ³ IMvigor010 (NCT02450331)	Phase 3 N=700	Atezolizumab (adjuvant)Observation	Disease-free survival	 Disease-specific survival OS Distant metastasis-free survival Non-urinary tract recurrence-free survival Safety, QoL PK, immunogenicity 	October 2019

^{1.} Study NCT02632409. ClinicalTrials.gov website. Accessed July 24, 2017. 2. Study NCT03244384. ClinicalTrials.gov website. Accessed July 24, 2017 3. Study NCT02450331. ClinicalTrials.gov website. Accessed July 24, 2017.


Adjuvant chemotherapy after Neoadjuvant chemotherapy and RC?

The case of pT3/T4 and/or pN+ UCB


Seisen T et al. JAMA Oncol. doi:10.1001/jamaoncol.2017.2374 (Epub ahead of print)

Oncologic Outcomes for Patients with Residual Cancer at Cystectomy Following Neoadjuvant Chemotherapy

Bhindi B, et al. Eur Urol (2017), http://dx.doi.org/10.1016/j.eur- uro.2017.05.016

Open-label, single-arm, Phase II study, evaluating safety and efficacy of INCB054828 as adjuvant therapy for molecularly-selected, high-risk patients with urothelial carcinoma who have received neoadjuvant chemotherapy and surgery

Primary Endpoint: Relapse-free survival; N=56 (100 pts screened)

Study sponsor: EAU-RF

Power: 0.90; Alpha: 0.10; H0: 2-year RFS: 30%; H1: 2-year RFS: 45%

Follow-up duration: 2 years

andrea.necchi@istitutotumori.mi.it @AndreaNecchi