

Kidney Cancer

COORDINATOR: Alessandro Volpe, TEAM: Alessandro Antonelli, Marco Carini, Giacomo Cartenì, Francesco Ferraù

Case 1 E.P., male, 59 y.o.

- Obesity (100 Kg)
- OSAS
- High blood pressure
- Colon diverticulosis

- Acute lumbar pain with irradiation to the left lower limb and paresthesia
- MRI spine: L3 vertebral collapse without spinal cord injury

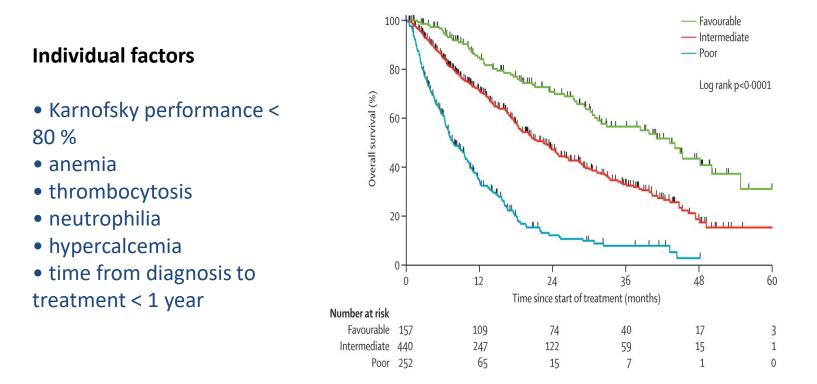
- Total body CT scan
 - Brain/neck/chest negative

- Bone scan
 - Significant uptake at the level of L3
 - Focal area at the distal third of the left femur (not confirmed at MRI)

Bone biopsy at the time of arthrodesis

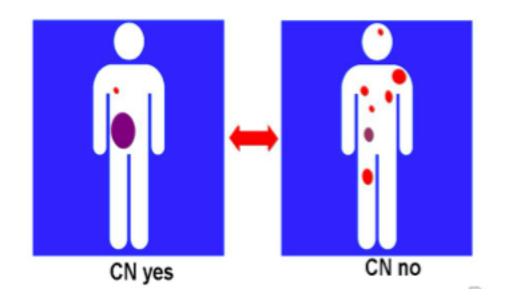
Pathology: clear cell neoplasm, likely of renal origin

Case 1 E.P., male, 59 y.o.

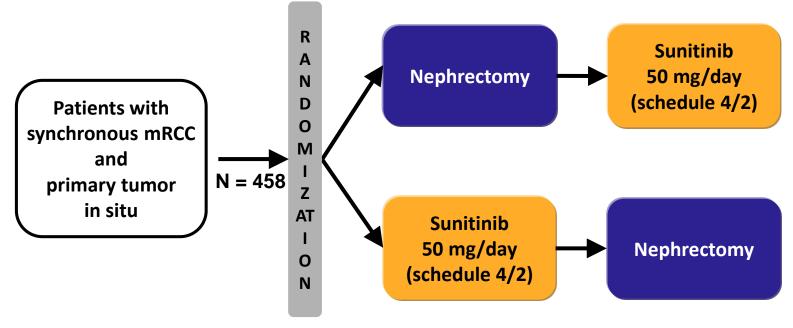

- Metastatic RCC (bone)
- ECOG 1 (lumbar pain irradiated to the hip and right lower limb in upright position, not at rest)
- sCr 0.77 mg/dL
- Hb 11.9 g/dL, WBC and PLTs normal
- Albumin, calcium, ALP, LDH normal
- MSKCC / IMDC score 2 (intermediate risk)

CYTOREDUCTIVE NEPHRECTOMY

 Tumour resection is curative only if all tumour deposits are excised. This includes patients with the primary tumour in place and singleor oligo-metastatic resectable disease.

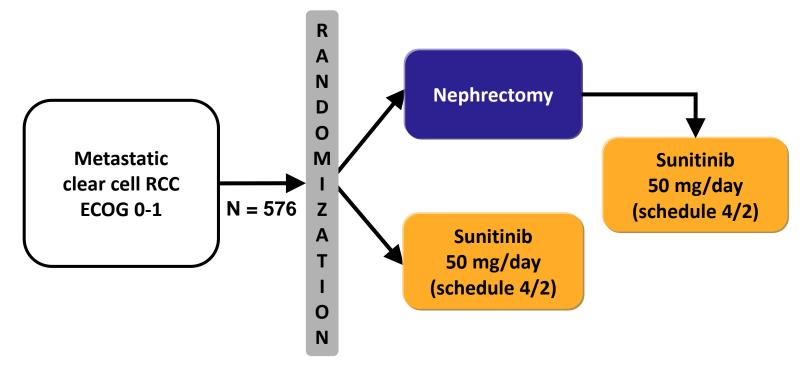

• For most patients with metastatic disease, cytoreductive nephrectomy (CN) is palliative and systemic treatments are necessary.

SELECTION IS KEY PATIENT FEATURES



Heng et al., External validation and comparison of the IMDC prognostic model with other models The Lancet Oncology 14 (2)141-8, 2013

SELECTION IS KEY TUMOR FEATURES


SURTIME, a EORTC-GU 30073 Phase III Study Investigating the Sequence of Nephrectomy and Sunitinib

Primary end point: PFS

Secondary end points: OS, association with prognostic gene and protein expression profiles

CARMENA Phase III Study of Sunitinib Only vs. Nephrectomy Followed by Sunitinib

- Primary objective: Is sunitinib alone non-inferior to nephrectomy plus sunitinib in terms of OS?
- Note: NO stratification in MSKCC or IMDC risk

Radiation therapy on L2-L4 (8 Gy)

Laparoscopic right radical nephrectomy + Paracaval/interaortocaval LND

Pathology Clear cell RCC - Grade III-IV – diffuse necrosis pT2 N0

LYMPH NODE DISSECTION

Platinum Priority – Kidney Cancer Editorial by Urs E. Studer and Frédéric D. Birkhäuser on pp. 35–37 of this issue

Radical Nephrectomy with and without Lymph-Node Dissection: Final Results of European Organization for Research and Treatment of Cancer (EORTC) Randomized Phase 3 Trial 30881

Jan H.M. Blom^{a,*}, Hein van Poppel^b, Jean M. Maréchal^c, Didier Jacqmin^d, Fritz H. Schröder^e, Linda de Prijck^f, Richard Sylvester^f, for the EORTC Genitourinary Tract Cancer Group

OUTCOMES

383 RN+LND Time-to-progression vs. Overall survival 389 RN alone Progression-free survival

Low-risk population

	With lymph disse	-node	With complet lymph-node dissection			
	n	%	n	%		
Site of the tumor						
Right side	195	53	198	54		
Left side	172	47	169	46		
Tumor category						
T1	23	6	34	9		
T2	242	66	221	60		
T3	101	28	112	31		
Tumor diameter, cm						
Median	6	5 5.5				
Maximum	20	19				

All cNO patients

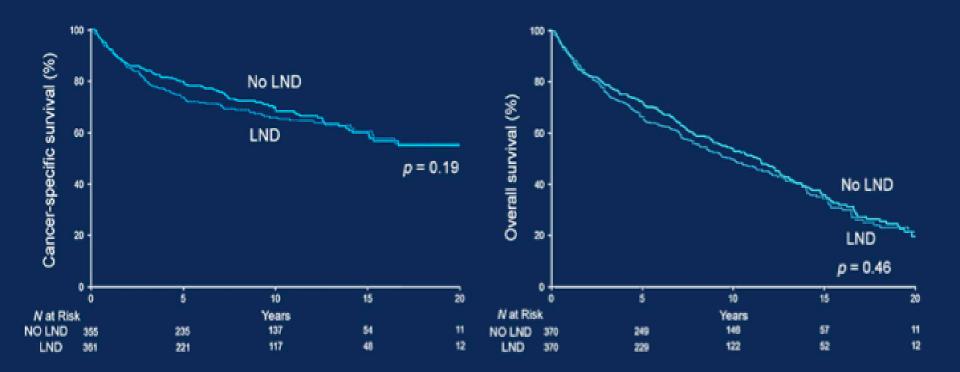
Radical Nephrectomy with and without Lymph-Node Dissection: Final Results of European Organization for Research and Treatment of Cancer (EORTC) Randomized Phase 3 Trial 30881

Jan H.M. Blom ^{a,*}, Hein van Poppel^b, Jean M. Maréchal^c, Didier Jacqmin^d, Fritz H. Schröder^e, Linda de Prijck^f, Richard Sylvester^f, for the EORTC Genitourinary Tract Cancer Group

	Without lymph- node dissection		With complete lymph-node dissection		
	n	%	n	%	
pT category					
TO	5	1	4	1	
T1	19	5	21	6	
T2	230	65	221	63	
T3	96	27	101	29	
T4	2	1	3	1	
TX	2	1	3	1	
pN-category					pN+ = 4%
NO	-	-	332	96	$\int p N^+ - 4 /_0$
N1	-	-	5	1	/ '
N2	-	-	6		4
N3	-	-	3	2 1	

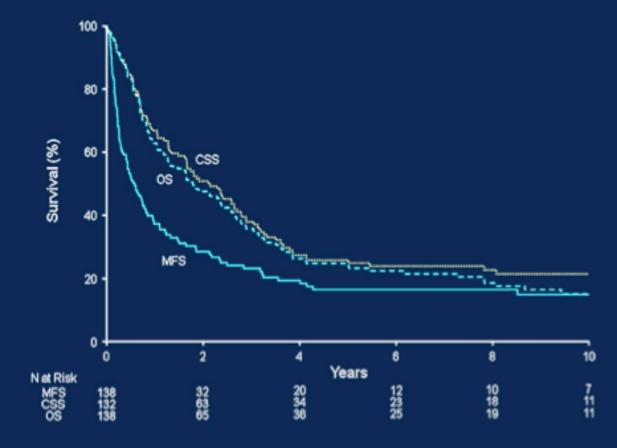
Radical Nephrectomy With or Without Lymph Node Dissection for Nonmetastatic Renal Cell Carcinoma: A Propensity Score-based Analysis

Boris Gershman^a, R. Houston Thompson^b, Daniel M. Moreira^c, Stephen A. Boorjian^b, Matthew K. Tollefson^b, Christine M. Lohse^d, Brian A. Costello^e, John C. Cheville^f, Bradley C. Leibovich^{b,*}



- · Retrospective cohort study
- Single institution
- 1,797 cM0 RCC pts
- 1990-2010
- 34% underwent LND

Gershman et al. Eur Urol 2017


No survival effect after matching 1:1

Gershman et al. Eur Urol 2017

Key role of LND in terms of prognosis

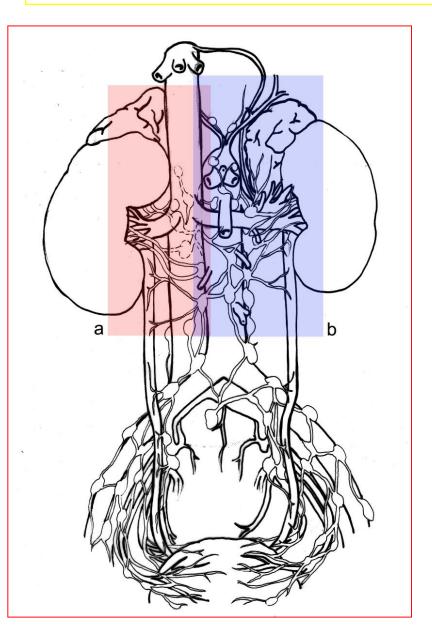
Gershman et al. Eur Urol 2017

Median MFS: <9 months

Median survival: 2 yrs

Can we predict LNI ?

Lymph Node Dissection at the Time of Radical Nephrectomy for High-Risk Clear Cell Renal Cell Carcinoma: Indications and Recommendations for Surgical Templates


Paul L. Crispen^a, Rodney H. Breau^a, Cristine Allmer^b, Christine M. Lohse^b, John C. Cheville^c, Bradley C. Leibovich^a, Michael L. Blute^{a,*}

- Non standardized LND in 415 cNO patients
- 5 risk factors:
 - 1. Tumor size > 10 cm
 - 2. Fuhrman 3-4
 - 3. Sarcomatoid component
 - 4. pT3-pT4
 - 5. Histologic tumor necrosis

169 high-risk patients

LNI 38%

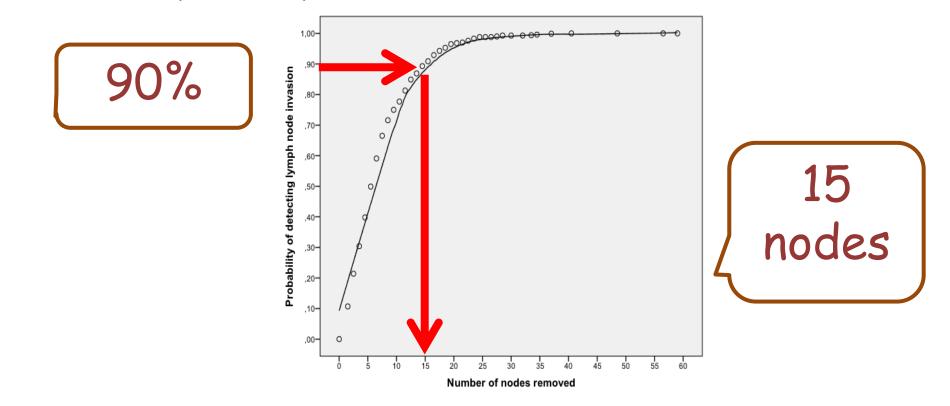
LND in RCC. Which template?

Predilection of RCC for early haematogenic dissemination ≈57% TanyNOM1

Directly to the thoracic duct $\approx 30\%$

Many possible different lymphatic routes in normal retroperitoneal anatomy

Collateral lymphatic drainage and invasion of tissue with different lymphatic drainage (e.g. perinephric fat)


Isolated metastases in the ipsilateral iliac and supraclavicular nodes ≈10%

Staging lymphadenectomy in renal cell carcinoma must be extended: a sensitivity curve analysis

Umberto Capitanio, Nazareno Suardi, Rayan Matloob, Firas Abdollah, Fabio Castiglione, Alberto Briganti, Cristina Carenzi, Marco Roscigno, Francesco Montorsi and Roberto Bertini

Department of Urology, University Vita-Salute, San Raffaele Hospital, Milan, Italy

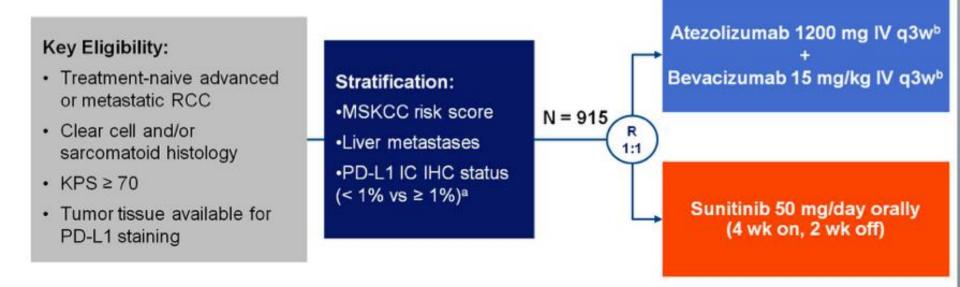
 $n = 850; T_{any}NO-1M_{any}RCC + LND (1987-2011)$

© 2012 BJU International | 111, 412-418 | doi:10.1111/j.1464-410X.2012.11313.x

FIRST LINE SYSTEMIC THERAPY

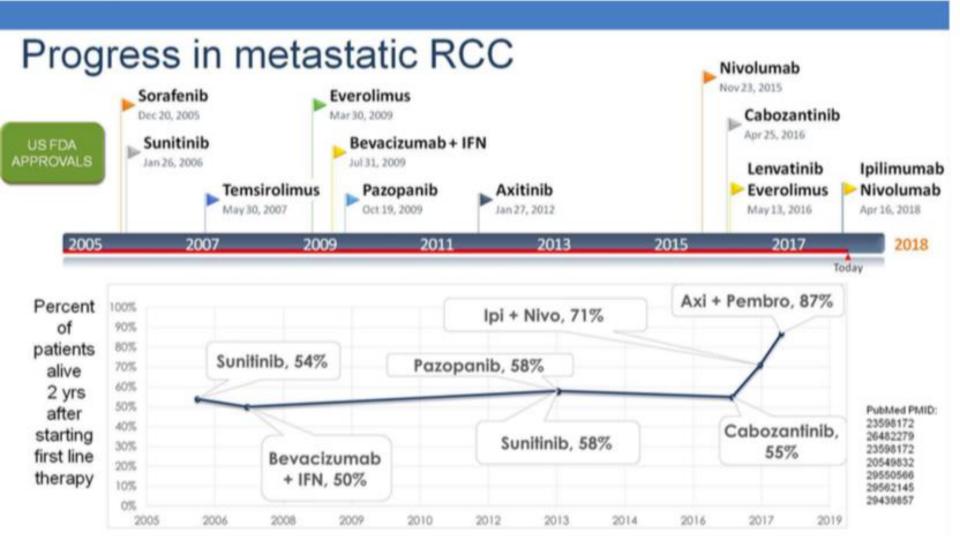
EAU Guidelines on Renal Cell Carcinoma

2018


	First-line therapy	Second-line therapy	Third-line therapy
IMDC favourable risk disease	sunitinib or pazopanib	cabozantinib or nivolumab	cabozantinib or nivolumab
IMDC intermediate	ipilimumab/ nivolumab	cabozantinib or VEGF-targeted therapy	cabozantinib or an alternative targeted therapy
and poor risk disease	cabozantinib, sunitinib or pazopanib*	VEGF targeted therapy or nivolumab	An alternative targeted therapy or nivolumab

Boxed categories represent strong recommendations

The combination of nivolumab and ipilimumab in the ITT population of treatment-naïve unselected patients with clear-cell metastatic RCC leads to superior survival compared to sunitinib. 2b Due to the exploratory nature of PD-L1 tumour expression, the small sample size, the lack of OS data and the premature results in this subpopulation, definitive conclusions cannot be drawn. 2b	The combination of nivolumab and ipilimumab in treatment-naïve patients with clear-cell metastatic RCC of IMDC intermediate- and poor-risk leads to superior survival compared to sunitinib.	1b
Due to the exploratory nature of PD-L1 tumour expression, the small sample size, the lack of OS data and the premature results in this subpopulation, definitive conclusions cannot be drawn.	The combination of nivolumab and ipilimumab in the ITT population of treatment-naïve unselected	2b
	Due to the exploratory nature of PD-L1 turnour expression, the small sample size, the lack of OS data	2b
deaths.	Nivolumab plus ipilimumab was associated with 15% grade 3-5 toxicity and 1.5% treatment-related	1b


Recommendation	Strength rating
Use ipilimumab plus nivolumab in treatment-naïve patients with clear-cell metastatic RCC of	Strong
IMDC intermediate and poor risk.	
Offer nivolumab after one or two lines of VEGF-targeted therapy in metastatic RCC.	Strong
Do not offer monotherapy with interferon- α or high-dose bolus interleukin-2 as first-line	Weak
therapy in metastatic RCC.	
Do not use bevacizumab plus IFN-a in treatment-naïve clear-cell favourable- and	Weak
intermediate-risk RCC patients.	
Do not use PD-L1 tumour expression as a predictive biomarker.	Weak
Administer nivolumab plus ipilimumab in centres with experience of immune combination	Weak
therapy and appropriate supportive care within the context of a multidisciplinary team.	
Do not rechallenge patients who stop nivolumab plus ipilimumab because of toxicity with	Strong
the same drugs in the future without expert guidance and support from a multidisciplinary	
team.	

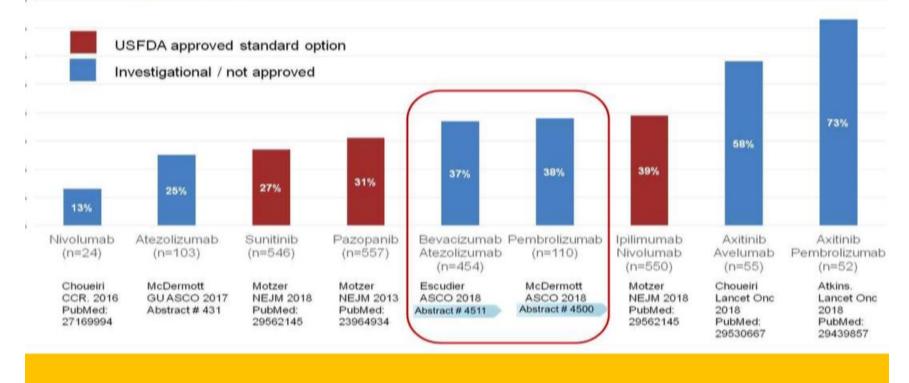
Study Design

Primary Endpoints

- PFS by investigator-assessment in PD-L1+ patients, defined as ≥ 1% expression on tumor-infiltrating immune cells (IC) as determined by immunohistochemistry (IHC)^a
- OS in ITT

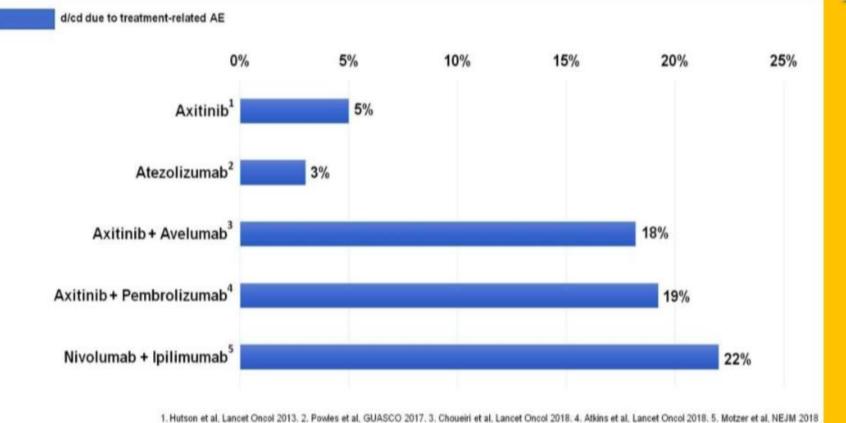
...nell'era delle COMBO IO+IO o IO+Tki...

RCC landscape today: Combinations: IO/IO and IO/VEGF


	1-0	+ TKI (phase 1/2)		I-O + I-O (phase 3) CheckMate-214	I-O + VEGF mAb (phase 3) /Mmotion151	TK) (comparator)
TRIAL	Pembrolizumab + Axitinib ¹	Pembrolizumab + Levantinib ²	Avelumab + Axitinib ³	Nivolumab + Ipilimumab Vs. Sunitinib ^{4,5}	Atezolizumab + Bevacizumab Vs. Sunitinib ⁶	Sunitinib ^s
N	52	30	55	425 Int/Poor risk subgroup	454	461
Prior allowed therapy	No	Yes	No	No	No	No
ORR	73%	63%	58%	42%	37%	39%

INCT02133742, Atkins et al. Lancet Oncol 2018; INCT02501096, Lee et al. ESMO 2017; INCT02483751, Choueki et al. Lancet Oncol 2018; INCT02231749; Motzer et al. SITC 2017 and NEJM 2018; INCT01984342 Motzer et al. ASCO GU 2018

Courtesy: AK Latani, Z. Bakouny, TK Chouest



Response Rates in Front Line metastatic ccRCC (all risk groups)

Presented By Elizabeth Plimack at 2018 ASCO Annual Meeting

...ma Tki o IO in monoterapia hanno meno tossicità delle COMBO

AIOM POST-ASCO REVIEW:

Data with single agents first-line PD-1/PD-L1 inhibitors in ccRCC

	Phase	N	IMDC poor	ORR	CR	ORR (PD-L1 +)	mPFS	Trt disc due to AEs
Nivolumab ¹	lb (CA209-009)	24	NA	13%	8%	NA	6m	NA
Atezolizumab ²	II (IMmotion150)	103	8%	25%	11%	28%	6.1m	3%
Pembrolizumab ³	II (KEYNOTE-427)	110	15.5%	38%	2.7%	50%	8.7m	10.9%

ITT: Intention to Treat NA: Not Available

1. Choueiri TK et al, Clin Cancer Res 2017. 2. Atkins MB et al, ASCO 2017 and McDermott et al, GUASCO 2017. 3. McDermott DF et al, ASCO 2018.

PRESENTED AT:

ANNUAL MEETI

2018 ASCO #ASCO18 Stides are the property of the outhor; permitation required for resor-

PRESENTED BY: TONI K. CHOUEIRI, MD

6

Presented By Toni Choueiri at 2018 ASCO Annual Meeting

Decisions Regarding Front line Therapy

- Patient Factors:
- Age
- Organ Function
- Immune Status
- Comorbid Conditions
- IMDC Risk
- Neutrophil-Lymphocyte
 Ratio
- Urgency of Response

Disease Factors:

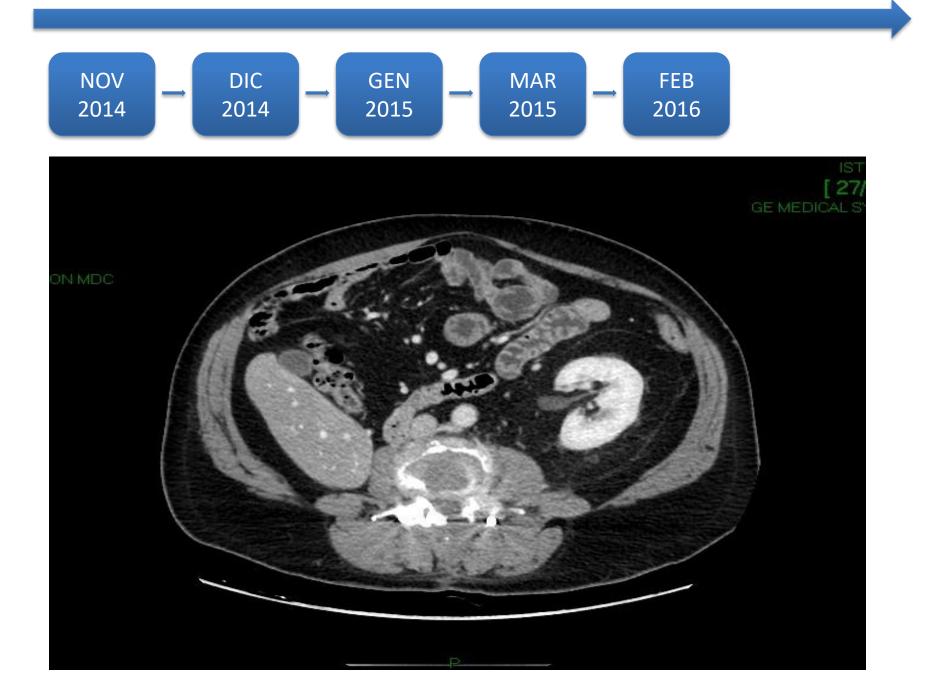
- Histology
- Presentation:

Synchronous/Metachronous

- Symptomatic or Not
- Sites of Metastases
- IMDC risk
- PDL-1 status
- Tumor genomic mutations

L'importanza del Team multidisciplinare

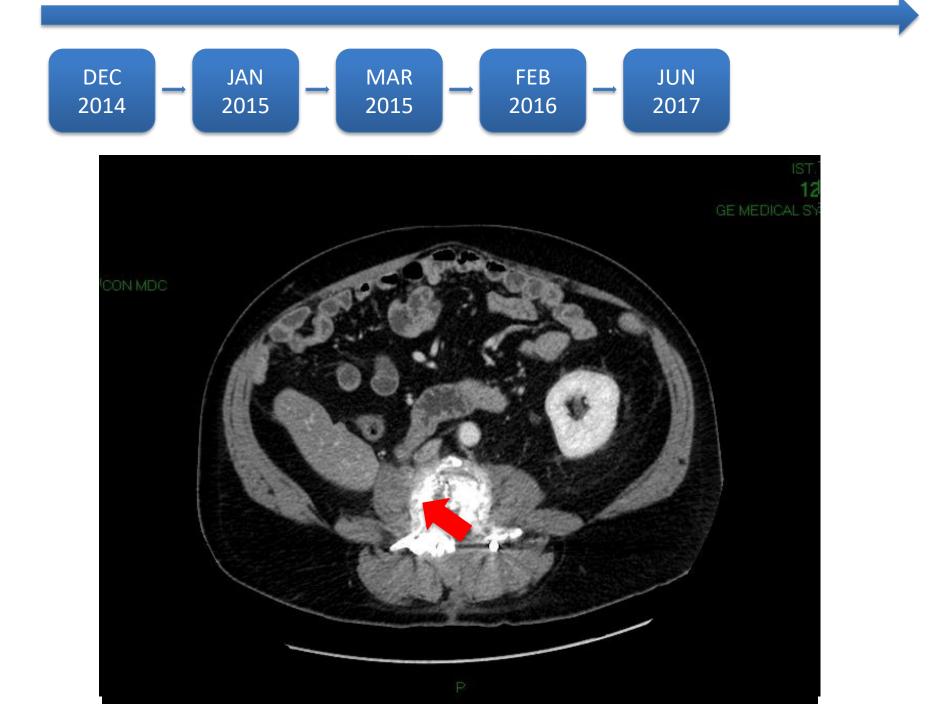
Starts


Sunitinib 50 mg 4 weeks on / 2 weeks off

Stable disease

Sunitinib 50 mg weeks 4/6 4 weeks on / 2 weeks off

Toxicity: nausea, vomiting and diarrhea G2



Continue Sunitinib

Sunitinib 50 mg orally 4 weeks on / 2 weeks off

Toxicity: diarrhea G2, hand-foot syndrome G2-3

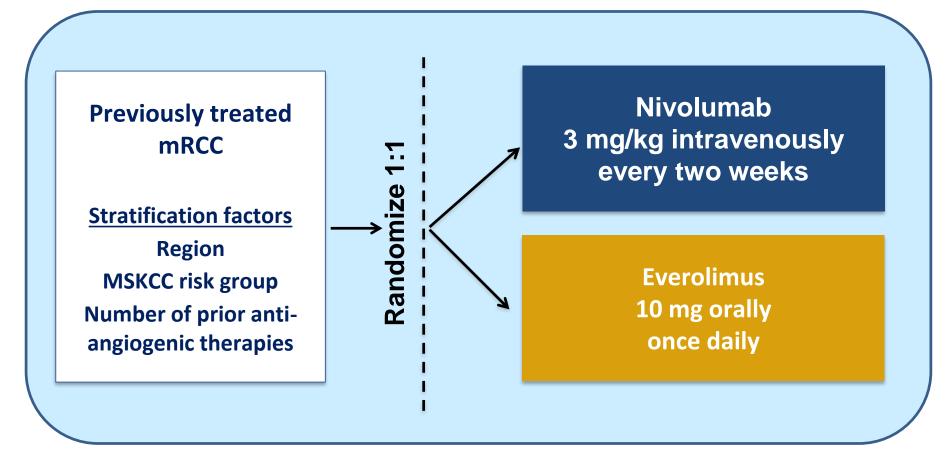
- Worsening lumbar pain
- Total body CT scan
 - Chest and abdominal PD
 - 4 pulmonary lesions max 16 mm
 - Mediastinal and retroperitoneal lymphadenopathy
 - Bone PD
 - Infiltration of left psoas muscle at the level of L3

Case 1 E.P., male, 61 y.o.

- Metastatic RCC (bone, lung, mediastinum)
- ECOG 0
- sCr 1.1 mg/dL
- Hb 12.1 g/dL, WBC and PLTs normal
- Albumin, calcium, ALP, LDH normal

Radiation therapy on L2-L4 (20 Gy/5 fractions)

Switch to second line systemic therapy


SECOND LINE SYSTEMIC THERAPY

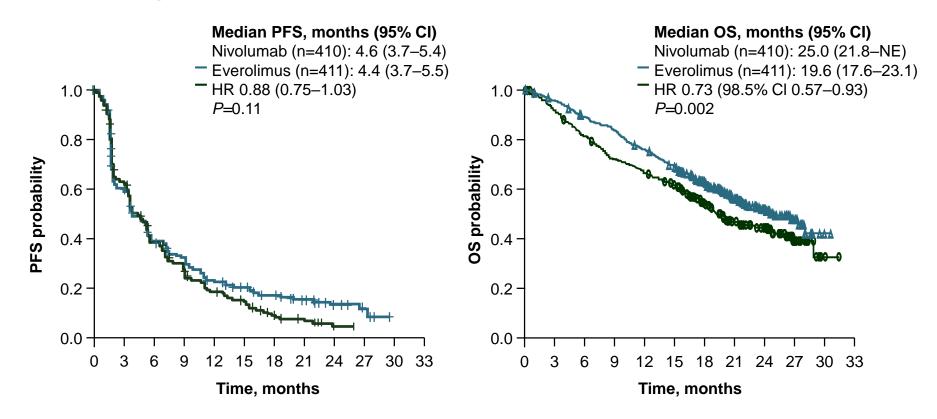
ORIGINAL ARTICLE

Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

R.J. Motzer, B. Escudier, D.F. McDermott, S. George, H.J. Hammers, S. Srinivas,
S.S. Tykodi, J.A. Sosman, G. Procopio, E.R. Plimack, D. Castellano, T.K. Choueiri,
H. Gurney, F. Donskov, P. Bono, J. Wagstaff, T.C. Gauler, T. Ueda, Y. Tomita,
F.A. Schutz, C. Kollmannsberger, J. Larkin, A. Ravaud, J.S. Simon, L.-A. Xu,
I.M. Waxman, and P. Sharma, for the CheckMate 025 Investigators*

Checkmate 025-Study design

- Patients were treated until progression or intolerable toxicity occurred
- Treatment beyond progression was permitted if drug was tolerated and clinical benefit was noted


Presented By P. Sharma at the European Cancer Congress, Vienna, 26 September 2015

MSKCC, Memorial Sloan-Kettering Cancer Center.

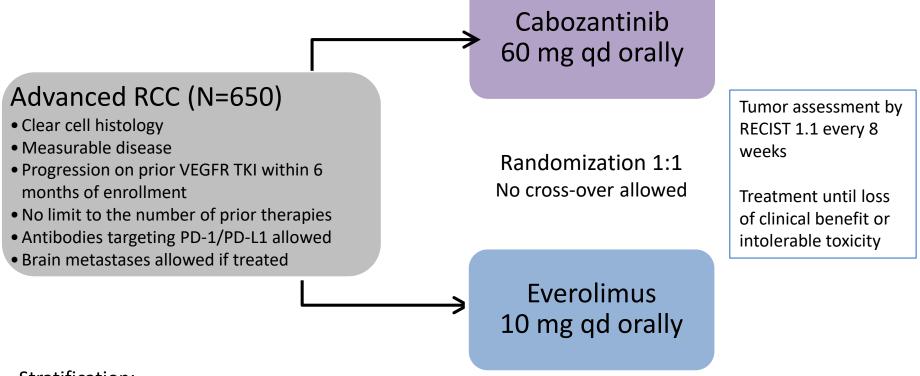
CheckMate-025: Nivolumab versus everolimus in second-line advanced RCC

Progression-free survival

Overall survival

CI, confidence interval; HR, hazard ratio; NE, not estimable; OS, overall survival; PFS, progression-free survival.

Motzer RJ et al. N Engl J Med. 2015;373:1803-1813.

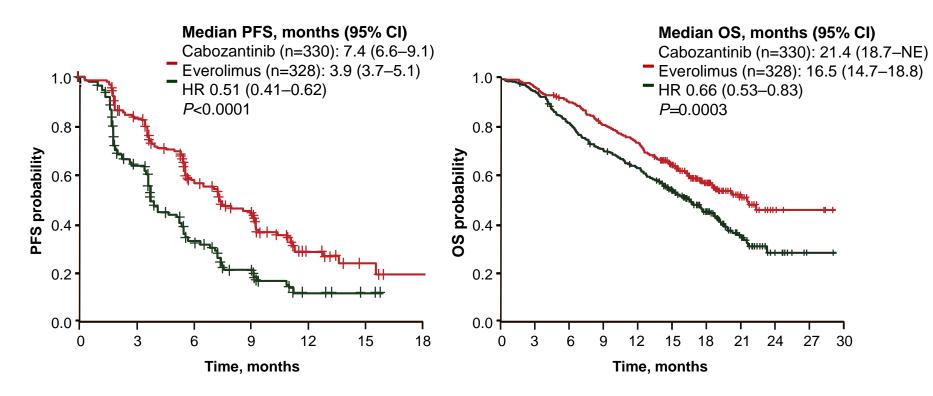

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma

T.K. Choueiri, B. Escudier, T. Powles, P.N. Mainwaring, B.I. Rini, F. Donskov, H. Hammers, T.E. Hutson, J.-L. Lee, K. Peltola, B.J. Roth, G.A. Bjarnason, L. Géczi, B. Keam, P. Maroto, D.Y.C. Heng, M. Schmidinger, P.W. Kantoff, A. Borgman-Hagey, C. Hessel, C. Scheffold, G.M. Schwab, N.M. Tannir, and R.J. Motzer, for the METEOR Investigators*

METEOR Study Design


Stratification:

- MSKCC¹ risk groups: favorable, intermediate, poor
- Number prior VEGFR-TKIs: 1, 2 or more

METEOR Study Design

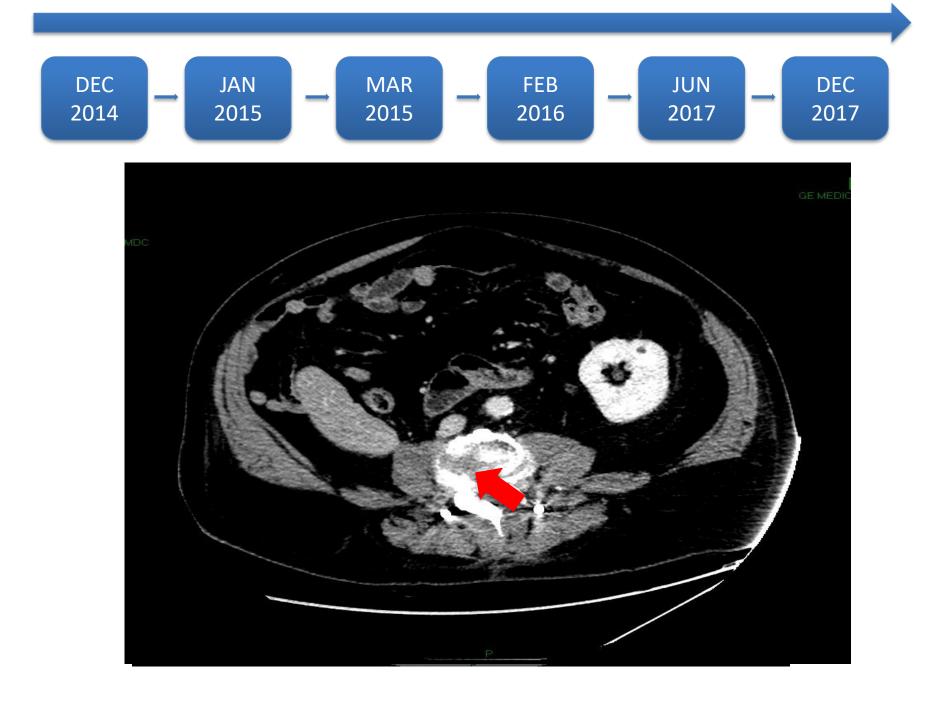
Progression-free survival

Overall survival

EAU Guidelines on Renal Cell Carcinoma

			2018
	First-line therapy	Second-line therapy	Third-line therapy
IMDC favourable risk disease	sunitinib or pazopanib	cabozantinib or nivolumab	cabozantinib or nivolumab
IMDC intermediate and poor risk disease	ipilimumab/ nivolumab	cabozantinib or VEGF-targeted therapy	cabozantinib or an alternative targeted therapy
	cabozantinib, sunitinib or pazopanib*	VEGF targeted therapy or nivolumab	An alternative targeted therapy or nivolumab

Boxed categories represent strong recommendations


Starts

Nivolumab 3 mg/kg iv every 2 wks

Nivolumab 3 mg/kg iv every 2 wks

DVT of right superficial femural vein -> LMWE

Case 1 E.P., male, 62 y.o.

- Metastatic RCC (bone, lung, mediastinum)
- PD (lung and mediastinum) SD (bone)
- ECOG 0-1 (intermittent hip and lumbar pain)
- sCr 1.15 mg/dL
- Hb 12.5 g/dL, WBC and PLTs normal
- Albumin, calcium, ALP, LDH normal

Switch to third line systemic therapy

THIRD LINE SYSTEMIC THERAPY

EAU Guidelines on Renal Cell Carcinoma

			2018
	First-line therapy	Second-line therapy	Third-line therapy
IMDC favourable risk disease	sunitinib or pazopanib	cabozantinib or nivolumab	cabozantinib or nivolumab
IMDC intermediate and poor risk disease	ipilimumab/ nivolumab	cabozantinib or VEGF-targeted therapy	cabozantinib or an alternative targeted therapy
	cabozantinib, sunitinib or pazopanib*	VEGF targeted therapy or nivolumab	An alternative targeted therapy or nivolumab

Boxed categories represent strong recommendations

Starts

Cabozantinib 60 mg/die per os

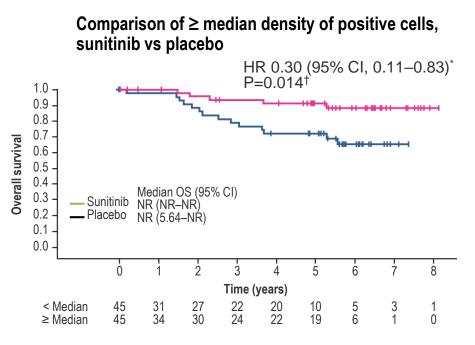
Stable disease at CT scan in April 2018

SYSTEMIC ADJUVANT TREATMENT

ADJUVANT TRIALS OF TARGETED AGENTS IN RCC

Study	Type of Drug	Duration	Primary Endpoint	Patient Population	Status (www.CT.gov)
ASSURE	VEGF (Sunitinib, sorafenib)	1 year	DFS	High & Int Risk N=1923	Negative
S-TRAC	VEGF (Sunitinib)	1 year	DFS	High Risk N=720ª	Positive for DFS, not for OS
ATLAS	VEGF (Axitinib)	1 year 3 years	DFS	High Risk N=700	Trial ongoing Projected Readout Date: June 2017
SORCE	VEGF (Sorafenib)	3 years	DFS	High & Int Risk N=1656	Awaiting results Projected Readout Date: Completed accrual
PROTECT	VEGF (Pazopanib)	1 year	DFS	High & Int Risk N=1500	Negative
EVEREST	mTOR (Everolimus)	1 year	RFS	High & Int Risk N=1218	Awaiting results Projected Readout Date: Completed accrual

PATIENT SELECTION

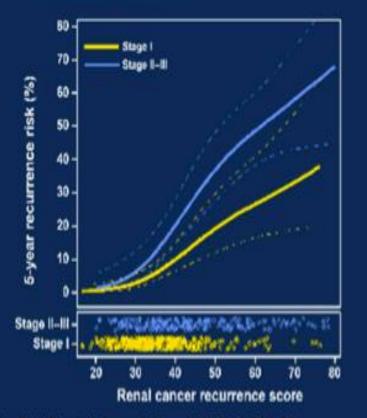

- The currently used prognostic tools do not capture well the biology of the tumor and do not adequately discriminate recurrence risk
- Grade, necrosis and performance status are subject to substantial interobserver variability
- The addition of prognostic molecular and genetic biomarkers may improve the identification of the very high risk population

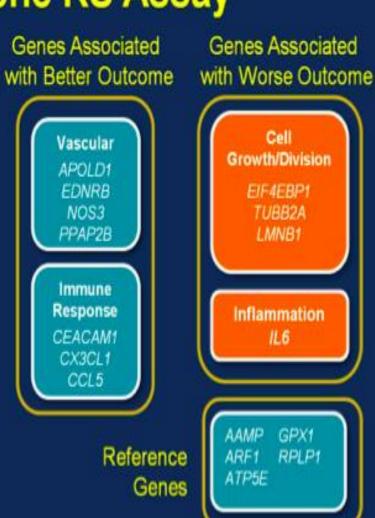
S-TRAC: BIOMARKER ANALYSIS BY IHC

CD8+ T-cells in tumour tissue may be a predictive biomarker

Tissue from 191 of the 615 patients (31.1%) analysed

- n=101/90 (sunitinib/placebo)
- PD-L1, CD4, CD8 and CD68 analysed
- No DFS difference between PD-L1-positive and negative subgroups in both arms
 - Prognostic value should be further explored¹
- No statistically significant association between tumour-infiltrating CD4 or CD68 levels and DFS or OS, in either group
- Increased density of CD8+ T-cells in tumour tissue was associated with longer DFS/OS in sunitinib-, but not placebo-treated patients, suggesting a predictive role




*Sunitinib vs placebo. †Unstratified log rank test.

DFS, disease-free survival; OS, overall survival; CI, confidence interval; HR, hazard ratio; NR, not reached.

The 16-Gene RS Assay

Risk profiles of continuous RS vs 5-year recurrence risk by stage in the validation cohort¹

Rini BI, et al. Lancet Oncol 2015;16:676-85.
 Copyright 2015. Reprinted with permission from Elsevier.

Recurrence Score = - 0.45 x vascular group score – 0.31 × immune response score + 0.27 × cell growth / division score + 0.04 × inflammation / scaled to 0–100

PRESENTED AT ASCO ANNUAL MEETING '17 #ASCO17

Inter-trial metaanalysis for ASSURE, PROTECT and S-TRAC

			adjuvant TKI	Placebo		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
ASSURE	0.0198	0.0824	647	647	40.5%	1.02 [0.87, 1.20]	+
PROTECT	-0.1485	0.1069	571	564	32.4%	0.86 [0.70, 1.06]	
S-TRAC	-0.2731	0.1264	309	306	27.1%	0.76 [0.59, 0.97]	
Total (95% CI)			1527	1517	100.0%	0.89 [0.75, 1.06]	•
Heterogeneity: Tau ² = Test for overall effect:			= 0.12); I ² = 5	52%			0.01 0.1 1 10 100 Favours [adjuvant TKI] Favours [Placebo]

Marconi et al., personal communication

 $\hat{\nabla}$

ASSESSMENT OF EVIDENCE ON ADJUVANT SUNITINIB

GRADE

Domaines	Items		
Quality of evidence weak	Conflicting DFSNo OS benefit yet		
Harms-benefits ratio weak	 Significant reduction in QoL items 		
Values and preferences weak	 Inconsistent and premature 		
Costs weak	- High in view of the above		

available at www.sciencedirect.com journal homepage: www.europeanurology.com

Brief Correspondence

Updated European Association of Urology Guidelines Regarding Adjuvant Therapy for Renal Cell Carcinoma

Axel Bex^{a,*}, Laurence Albiges^b, Börje Ljungberg^c, Karim Bensalah^d, Saeed Dabestani^e, Rachel H. Giles^{f,g}, Fabian Hofmann^h, Milan Horaⁱ, Markus A. Kuczyk^j, Thomas B. Lam^{k,l}, Lorenzo Marconi^m, Axel S. Merseburgerⁿ, Michael Staehler^o, Alessandro Volpe^p, Thomas Powles^q

Summary of evidence	LE		
Adjuvant cytokines do not improve survival after nephrectomy.			
Adjuvant sunitinib improved disease-free survival in one of the two available studies, but not overall			
survival, after nephrectomy, in selected high-risk patients.			

Recommendation	Strength rating
Do not offer adjuvant therapy with sorafenib or pazopanib.	Strong
Do not offer adjuvant sunitinib following surgically resected high-risk clear-cell renal cell	Weak
cancer.	

CONCLUSIONS

- Currently published trial on adjuvant treatment with TKIs after nephrectomy for RCC differ significantly in terms of population size and characteristics
- The evidence of efficacy of TKIs is discordant (significant DFS benefit only in S-TRAC, no OS benefit)
- The profile of adverse event of TKIs is consistent with the metastatic setting, but leads to a significant proportion of dose reductions and treatment discontinuations in the adjuvant setting

CONCLUSIONS

- Adjuvant treatment with TKIs is not recommended by the guidelines but sunitinib is an option in selected cases
- Accurate selection based on clinical features and biological/genetic tumor characteristics is crucial to identify the ideal candidates
- The results of the ongoing trials of targeted and immunotherapy agents in the adjuvant setting are awaited