

Sergio Bracarda MD, Medical Oncology, Dept. of Oncology Az. Ospedaliera S. Maria, Terni, Italy

Perugia, 16 Aprile 2019

My Disclosures

- Adv. Board Member for: *Pfizer, BMS, Novartis, MSD, Roche, Astellas, Janssen, Ipsen.*
- Travel Accomodation with: *Pfizer, BMS, Roche, Astellas, Janssen, Ipsen. Bayer*
- Reasonable Honoraria (Talks) from: *Pfizer, Roche, Astellas, Novartis, BMS, Janssen*

Treatment Algorythm in RCC: A Continuosly Changing Scenario

Second-line Treatment Options for mRCC: Summary of Efficacy

	Nivolumab ^[1]	Cabozantinib ^[2]	Axitinib ^[3,4]	Lenvatinib/ Everolimus ^[5,6]
Median PFS, <i>mos</i>	4.6	7.4	6.7	14.6
ORR, %	25	17	19	43
Median OS, mos	25.0	21.4		25.5

- 1. Motzer RJ, et al. N Engl J Med. 2015;373:1803-1813.
- 2. Choueiri TK, et al. Lancet Oncol. 2016;17:917-927.
- 3. Rini BI, et al. Lancet. 2011;378:1931-1939. 4. Motzer RJ, et al. Lancet Oncol. 2013; 14:552-562.
- 5. Motzer RJ, et al. Lancet Oncol. 2015;16:1473-1482. 6. Hutson TE, et al. ASCO 2016. Abstract 4553.

CheckMate-025: PFS & OS results

CheckMate-025 Study. Three-Year Efficacy Update.

• Median OS remained significantly longer with Nivo vs Eve, with 3-yr OS rates of 39% vs 30%. (Fig.1)

Everolimus 411

227

129

97

61

47

25

16

3

Phase 3 METEOR Study: Primary EP of PFS (Independent Review – PFS Population)

Treating mRCC: A Continuosly Changing Scenario

Is there a Way to Select the Most Appropriate 1st Line Treatment Option in mRCC ?

... Discussing ...:

GOAL: An Inverse Toxicity-Related Algorithm for Daily Clinical Practice Decision Making in Advanced Kidney Cancer

Eventual Comorbidity or relevant Clinical Condition	Potential Polarizing Toxicity	Drug to avoid in 1st line	Drug to avoid in 2nd line or later
Serious pre-existing cardiac problems	Seriuos cardiotoxicity	SUNITINIB PAZOPANIB (?)	SUNITINIB
Serious Liver impairment	Liver toxicity	PAZOPANIB	SUNITINIB (?)
Uncontrolled Hypertension	Hypertension	SUNITINIB- BEVACIZUMAB+IFN	AXITINIB
Uncontrolled Diabetes and dyslipedemia	Metabolic toxicities	-	EVEROLIMUS
Important Respiratory tract diseases (Eg COPD)	Pulmonary toxicity	-	EVEROLIMUS
Viral latent infections (e.g. active HBV, HCV infections)	Viral reactivation	-	EVEROLIMUS
Some Job Situations	Dermatological toxicity	SORAFENIB	SORAFENIB
History of Thromboembolisms or Haemorrages.	Vascular events -	BEVACIZUMAB+ IFN	-

A)

Bracarda S. et al. Critical Reviews in Oncology/Hematology, 2014

A) Patient' Comorbidities, as a selection matter ! - one Patient, but more diseases -

Bracarda S. et al. Critical Reviews in Oncology/Hematology, 2014

Daniel's Data

Bob's Data

Bob's (MSKCC) Risk Score

Poor

KPS	
Hb	
LDH	
Corrected sCalcium	
DFI	

3+

3.9 month

Prognosis

mRCC: prognostic factors

Daniel's (IMDC) Risk Score

KPS	< 80
Hb	< LLN
Platelet Count	> ULN
Neutrophil Count	> ULN
Corrected sCalcium	> 10mg/dl
Time from Diagnosis to Treatment	< 12m

IMDC Prognostic Factors: Validated in First-Line Agents in mRCC

A Z I E N D A al. Lancet Oncol. 2013;14:141-148. Reproduced with permission of Lancet Oncol. OSPEDALIERA SANTA MARIA

TERN

Prognostic Scores: Heng criteria (IMDC)

Heng et al. J Clin Oncol. 2009

IMDC Risk group	N° of Factors	Median OS
Good	0	43.2 months
Intermediate	1-2	22.5 months
Poor	3-6	7.8 months

Prognosis

Any eventual available Predictive Classification ?

C) Treatment' Factors (*Mechanism of Action and more*)

What We may use, at the moment, for a Daily Clinical Practice Decision Making?

... Some Informations from recent Trials on mRCC ...

Is there a Way to select the most appropriate First Treatment Option in mRCC ?

... Discussing ...:

IMmotion150 (*preliminary Ph.II Study to IMmotion 151*) Trial Design

- Coprimary endpoints: PFS (RECIST v1.1 by IRF) in ITT and PD-L1+ patients
- IMmotion150 designed to be hypothesis generating and inform the trial design of the Ph. III study IMmotion151
- Amendments included: Based on Phase 1a data, the definition of PD-L1 positivity was revised from ≥ 5% to ≥ 1% of IC expressing PD-L1¹
 - In addition to ITT patients, PD-L1+ patients were included in the co-primary EP of IRF-assessed PFS, after interim analyses

A Phase II Study of Atezolizumab With or Without Bevacizumab vs Sunitinib in Untreated Metastatic Renal Cell Carcinoma Patients

David McDermott,¹ Michael Atkins,² Robert Motzer,³ Brian Rini,⁴ Bernard Escudier,⁵ Lawrence Fong,⁶ Richard W. Joseph,⁷ Sumanta Pal,⁸ Mario Sznol,⁹ John Hainsworth,¹⁰ Walter M. Stadler,¹¹ Thomas Hutson,¹² Alain Ravaud,¹³ Sergio Bracarda,¹⁴ Cristina Suarez,¹⁵ Toni Choueiri,¹⁶ YounJeong Choi,¹⁷ Mahrukh A. Huseni,¹⁷ Gregg D. Fine,¹⁷ Thomas Powles¹⁸

 ¹Beth Israel Deaconess Medical Center, Boston, MA; ²Georgetown Lombardi Comprehensive Cancer Center, Washington, DC;
 ³Memorial Sloan Kettering Cancer Center, New York, NY; ⁴Cleveland Clinic, Cleveland, OH; ⁵Gustave Roussy, Villejuif, France;
 ⁶Uhiversity of California, San Francisco School of Medicine, San Francisco, CA; ⁷Mayo Clinic Hospital – Florida, Jacksonville, FL;
 ⁸City of Hope Comprehensive Cancer Center, Duarte, CA; ⁹Yale School Of Medicine, New Haven, CT; ¹⁰Sarah Cannon Research Institute, Nashville, TN; ¹¹University of Chicago Medicine, Chicago, IL; ¹²Texas Oncology - Baylor Charles A. Sammons Cancer
 ⁶Center, Dallas, TX; ¹⁵CHU Hopitaux de Bordeaux - Höpital Saint-André, Bordeaux, France; ¹⁴Ospedale San Donato, Arezzo, Italy;
 ¹⁵Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Authonoma de Barcelona, Barcelona, Spain;
 ¹⁶Dana-Farber Cancer Institute, Boston, MA; ¹⁷Genentech, Inc., South San Francisco, CA, USA; ¹⁸Barts Cancer Institute, Queen Mary University of London, UK

IMmotion150: IRF-Assessed PFS ≥ 1% of IC Expressing PD-L1

Brauer, Clin Cancer Res. 2012; Herbst, Nature 2014; Powles, SITC 2015; Fehrenbacher, Lancet 2016. McDermott, AACR 2017.

Addition of Bevacizumab to Atezolizumab in 1L is Associated With Improved Benefit in T-effector^{High}/Myeloid Inflammation^{High} Subgroup

PFS measured by independent review facility. T-effector Gene Signature: *CD8A, EOMES, PRF1, IFNG, CD274*. High: ≥ median expression, Low: < median expression. McDermott, AACR 2017.

IC, tumor-infiltrating immune cells. ^a Using SP142 IHC assay; ^bNo dose reduction for atezolizumab or bevacizumab.

Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma

Robert J. Motzer, M.D., Nizar M. Tannir, M.D., David F. McDermott, M.D., Osvaldo Arén Frontera, M.D., Bohuslav Melichar, M.D., Ph.D., Toni K. Choueiri, M.D., Elizabeth R. Plimack, M.D., Philippe Barthélémy, M.D., Ph.D., Camillo Porta, M.D., Saby George, M.D., Thomas Powles, M.D., Frede Donskov, M.D., Ph.D., <u>et al.</u>, for the CheckMate 214 Investigators^{*}

Baseline characteristics

	IMDC interme	ediate/poor risk	Intentio	Intention to treat	
Characteristic	NIVO + IPI N = 425	SUN N = 422	NIVO + IPI N = 550	SUN N = 546	
Median age, years	62	61	62	62	
Male, %	74	71	75	72	
IMDC prognostic score (IVRS), % Favorable (0) Intermediate (1–2) Poor (3–6)	0 79 21	0 79 21	23 61 17	23 61 16	
Region (IVRS), % USA Canada/Europe Rest of the world	26 35 39	26 35 39	28 37 35	28 36 36	
Quantifiable tumor PD-L1 expression, % <1% ≥1%	n = 384 74 26	n = 392 71 29	n = 499 77 23	n = 503 75 25	

 Baseline characteristics in favorable-risk patients were similar, except tumor PD-L1 expression was lower than the intermediate/poor-risk patients and ITT population

Overall Survival: ITT Patients

CheckMate 214

Overall Survival: by IMDC Risk

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.2

0.1

0.0

(probability)

survival

Overall 0.3

No. at risk

NIVO+IPI

SUN

CheckMate 214

Presented By Nizar Tanni

NIVO+IPI

SUN

Median OS, months (95% CI)

HR (95% CI), 0.66 (0.54-0.80)

NR (35.6-NE)

26.6 (22.1-33.4)

94 88

> 88 70 26 2

125 124 120 116 111 108 104 102 101 98

124 119 119 117 114 110 109 105 103 101 96

Favorable risk

P < 0.0001 1.0 0.9 (probability) 80% 0.8 66% 0.7 60% 0.6 NIVO+IPI 72% survival 0.5 53% 0.4 47% Overall 0.3 SUN 0.2 0.1 0.0 12 15 27 33 39 42 9 18 21 30 36 45 3 6 24 Months No. at risk NIVO+IPI 425 399 372 348 332 317 306 287 270 253 233 183 90 34 SUN 422 388 353 318 290 257 236 220 207 194 179 144 75 29 3 0

Presented By Nizar Tannir at 2019 Genitourinary Cancers Symposium

CheckMate 214: PFS and ORR: IMDC favorable risk

IMDC Favorable Risk	N = 2	249ª		
Outcome	NIVO + IPI N = 125	SUN N = 124		
Confirmed ORR, ^b % (95% CI)	29 (21–38)	29 (21–38) 52 (43–61)		
	<i>P</i> = 0.0002			
PFS, ^c median (95% CI), months	15.3 (9.7–20.3)	25.1 (20.9–NE)		
	HR (99.1% CI) 2	.18 (1.29–3.68)		
	P < 0.	0001		

^a11% of patients in both arms had tumor PD-L1 expression ≥1% ^bIRRC-assessed by RECIST v1.1 ^cIRRC-assessed

Exploratory endpoint

Exploratory endpoint

CheckMate 214: Antitumor activity by tumor PD-L1 expression level

	IMDC intermediate/poor risk				Intention to treat			
	PD-L1	<1%	PD-L1	l ≥1%	PD-L ²	1 <1%	PD-L1	l ≥1%
Outcome	NIVO + IPI N = 284	SUN N = 278	NIVO + IPI N = 100	SUN N = 114	NIVO + IPI N = 386	SUN N = 376	NIVO + IPI N = 113	SUN N = 127
ORR,ª % (95% CI)	37 (32–43)	28 (23–34)	58 (48–68)	22 (15–31)	36 (31–41)	35 (31–40)	53 (44–63)	22 (15–30)
	<i>P</i> = 0.0252		<i>P</i> < 0.0001		<i>P</i> = 0.8799		<i>P</i> < 0.0001	
BOR, ^a % Complete response Partial response Stable disease Progressive disease NA	7 30 36 20 7	1 27 47 13 12	<mark>16</mark> 42 19 14 9	1 21 40 25 13	<mark>9</mark> 27 39 18 7	2 33 43 11 11	14 39 25 14 8	1 21 43 23 13

^aIRRC-assessed

Abstract LBA30 CABOzantinib versus SUNitinib (CABOSUN) as initial targeted therapy for patients with metastatic renal cell carcinoma (mRCC) of poor and intermediate risk groups

Toni K. Choueiri MD, et Al. ALLIANCE A031203 Trial

Presented at the ESMO 2016 Congress, Copenha

 Susan Halabi PhD. Ben Sanford MS. Olwen Hahn MD, M. Dror Michaelson MD, Meghara Walsh RN, Thomas Olencki MD, Joel Picus MD, Fric Small MD, Shaker Dakhil MD Daniel George MD, and Michael J. Morris MD

CABOzantinib versus **SUN**itinib (CABOSUN). ALLIANCE A031203 Trial

Which place for TKIs?

DALIERA

Phase 2 CABOSUN Study: PFS by Independent Review Committee

Data cut-off: September 15, 2016 Choueiri TK, et al. ESMO 2017; abstract LBA38 and poster presentation

29

Phase 2 CABOSUN Study: OS (data cut-off July 01, 2017)

30

KEYNOTE-427: Clinical Response (Primary

Endno	nint)			
KEYNOTE-427 (First Line MonoTherapy with Pembro in mRC	c)	Cohort A (n = 110)		
	Response	n (%)	95% CI	
 First Line, Single-arm, open-label phase II study 	ORR*	42 (38.2)	29.1-47.9	
Patients with recurrent Patients with Response assessed	DCR (CR + PR + SD ≥ 6 mos)	65 (59.1)	49.3-68.4	
cratic cractic cracti	Best overall response CR PR SD	3 (2.7) 39 (35.5) 35 (31.8)	NR	
*Current analysis reports data from cohort A. Primary endpoint: ORR per RECIST v1.1 criteria by blinded ICR	PDNo assessment	31 (28.2) 2 (1.8)	*ORR confirmed	
 Secondary endpoints: DOR, DCR, PFS, OS, safety, tolerability McDermott DF, et al. ASCO 2018. Abstract 4500. 	Median follow-up, mos (range)	12.1 (2.5-16.8)	by blinded ICR.	

Cohort A	(n = 110)
----------	-----------

ResponseCohort A (n = 110)	Favorable IMDC Risk (n = 41)	Intermediate or Poor IMDC Risk (n = 69)	CPS ≥ 1 (n = 46)	CPS < 1 (n = 53)	Missing CPS Data (n = 11)
Confirmed ORR, % (95% CI)	31.7 (18.1-48.1)	42 (30.2-54.5)	50.0 (34.9-65.1)	26.4 (15.3-40.3)	45.5 (16.7-76.6)
DCR,* % (95% CI)	65.9 (49.4-79.9)	55.1 (42.6-67.1)	67.4 (52-80.5)	49.1 (35.1-63.2)	72.7 (39-94)
Confirmed best overall response, % • CR • PR • SD • PD • No assessment	2.4 29.3 51.2 17.1 0	2.9 39.1 20.3 34.8 2.9	6.5 43.5 26.1 23.9 0	0 26.4 35.8 34.0 3.8	0 45.5 36.4 18.2 0

A Z I E N D A OSPEDALIERA SANTA MARIA TERNI

McDermott DF, et al. ASCO 2018. Abstract 4500.

Finally, the Last Trials' Data

ORIGINAL ARTICLE (FREE PREVIEW)

Pembrolizumab plus Axitinib versus Sunitinib for Advanced Re Carcinoma

Brian I. Rini, M.D., Elizabeth R. Plimack, M.D., Viktor Stus, M.D., Ph.D., Rustern Gafanov, M.D., Robert Hawkins, M.B., B.S., M.D., D.Sci., Frédéric Pouliot, M.D., Ph.D., Boris Alekseev, M.D., Denis Soulières, M.D., Bohuslav Melichar, M.D., Ph.D., Iho Ph.D., Anna Kryzhaniyska, M.D., et al., for the KEYNOTE-426 Investigators*

1 0 11	/ere							
al-Cell	N OI	50-						
	N S	40-						
	ients	30-						
	Pat							
Dmitry Nosov.		20-		1 1 0 52 (0)	0/ CL 0 30 0 7	0		
nychenko, M.D.,		10- P<0	2ard ratio fo 0.0001	r death, 0.53 (95	o% CI, 0.38–0.74	+)		
		0	1	1	1	1		
		0	4	8	12	16	20	24
					Months			
No. at Risk						1000	2.578	
Pembrolizumab-axit	inib	432	417	378	256	136	18	0
Sumitinib		429	401	541	211	110	20	
B Overall Survival Accord	ding to	Subgroup						
		No. of D	eaths/					
Subgroup		No. of Pa	tients		Hazard R	atio for Death	(95% CI)	
Overall		156/8	61			-	0.	53 (0.38-
Age								
<65 yr		91/5	38		_	_	0.	47 (0.30-
≥65 yr		65/3	23				0.	59 (0.36-
Sex								
Male		108/6	28		_		0.	54 (0.37–
Female		48/2	33		-		0.	45 (0.25-
Region of enrollment								
North America		31/2	07				- 0.	69 (0.34-
Western Europe		31/2	10				0.	46 (0.22-
Rest of the world		94/4	44			- I	0.	51 (0.33-
IMDC risk category								
Favorable		17/2	69				<u> </u>	64 (0.24-
Intermediate		93/4	84				0.	53 (0.35-
Poor		46/1	08				0.	43 (0.23-
Karnofsky performance-st	atus so	ore						
90 or 100		88/6	88			-	0.	53 (0.35-
70 or 80		67/1	72				0.	49 (0.30-
PD-L1 combined positive	score							
<1		54/3	25				0.	59 (0.34-
≥l		90/4	97				0.	54 (0.35-
No. of organs with metas	tases							
1		21/2	10			-	0.	20 (0.07-
							0.	60 (0.42-
≥2		134/6	46					
≥2		134/6	46	0.1	0.5	5 1.0	2.0	

Pembrolizumab-axitinib

Sunitinib

ORIGINAL ARTICLE (FREE PREVIEW)

A Overall Survival

100-

90

80 Alive (%) 70-

60-

Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma

Robert J. Motzer, M.D., Konstantin Penkov, M.D., Ph.D., John Haanen, Ph.D., Brian Rini, M.D., Laurence Albiges, M.D., Ph.D., Matthew T. Campbell, M.D., Balaji Venugopal, M.D., Christian Kollmannsberger, M.D., Sylvie Negrier, M.D., Ph.D., Motohide Uemura, M.D., Ph.D., Jae L. Lee, M.D., Ph.D., Aleksandr Vasiliev, M.D., et al.

AZIENDA **OSPEDALIERA** SANTA MARIA

Sunitinib

444 329 271 192 144 90

64 29 20 8 2 0

TERNI

But, please consider also a possible Observational Phase, before starting Rx in some Cases

- Phase II study of pts with mRCC and no previous systemic therapy
 - Observation with periodic CT assessment; initiation of systemic treatment per discretion of physician and pt

- Unaffected by IMDC risk group (P = .57), location or number of metastases

Rini B, et al. ASCO 2014. Abstract 4520.

Decision Making in mRCC: Conclusions

Advanced RCC: strongly interested from *modern ImmunoTherapy Data, but* TKIs & Rx Sequencing remain important decision making Tools (*and changing the 1° Line and the available Biologic Data*)

1st Line Options, at the moment:

- ✓ (IMDC Int/poor Risk): Moving to Ipi+Nivo because of the >OS, with Cabo (significantly improving PFS) and Axi+Pembro as possible further Options.
- ✓ (IMDC Good Risk): Suni (Pazo & Tivo?) remain the treatment of Choice, ... with Ipi+Nivo, Axi+Pembro, Beva+Atezo or Pembro Alone as possible further options.

2nd Line (Standards of Care) Options:

Nivo & Cabo (but changing the 1° Line). But, some well identified Pts may be also treated with Axi (after Suni...).

3rd Line Options:

✓ To be considered (..Cabo/Eve, ?), in Pts with a favourable History. Thanks

