

8 e 9 MARZO 2019 BERGAMO

HOTEL EXCELSIOR SAN MARCO Piazza della Repubblica, 6

Responsabile Scientifico: Fabio Pace

Patrizia Brigidi Dipartimento Dipartimento di Farmacia e Biotecnologie Università di Bologna

I probiotici: aspetti normativi, biologici e clinici

HISTORY OF PROBIOTICS

Fermented products used as long as human history

1857: Pasteur discover LAB

1908: Metchnikoff suggests health benefit of LAB

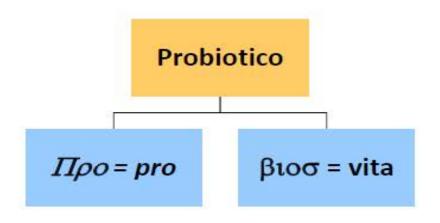
1935: Asia, first commercial LAB-containing product

1980's: Europe, first commercial probiotic yoghurts

1965: First use of

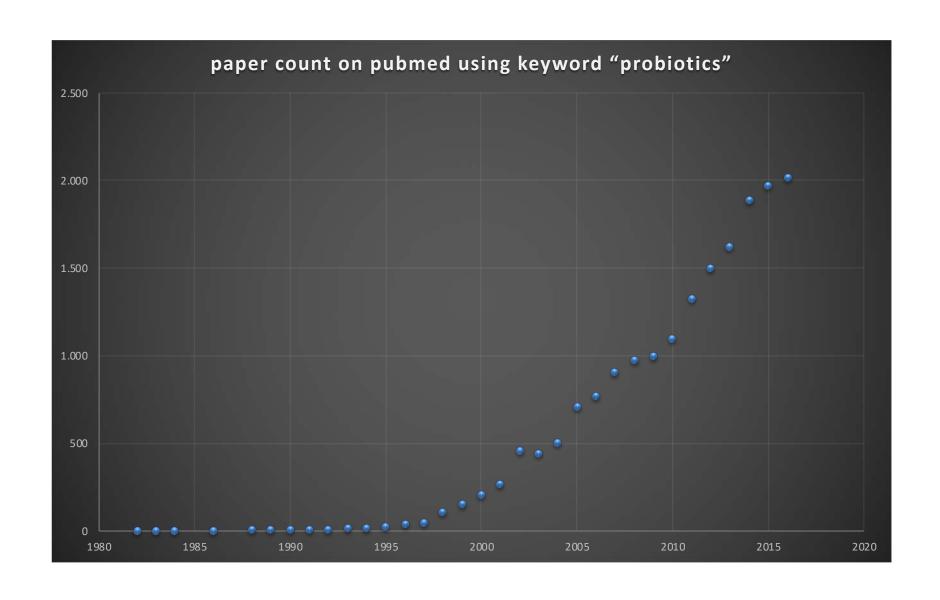
the term

PROBIOTIC

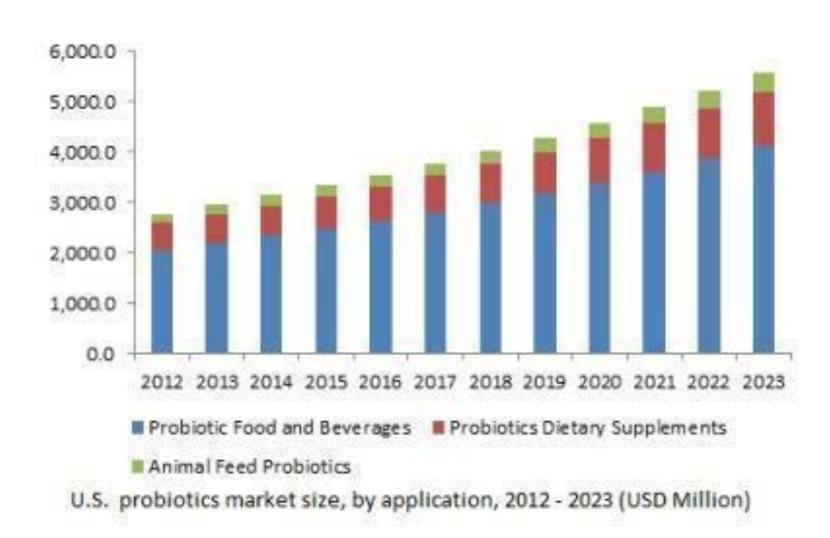

2000 to now:

increasing awareness of probiotic potential in consumers

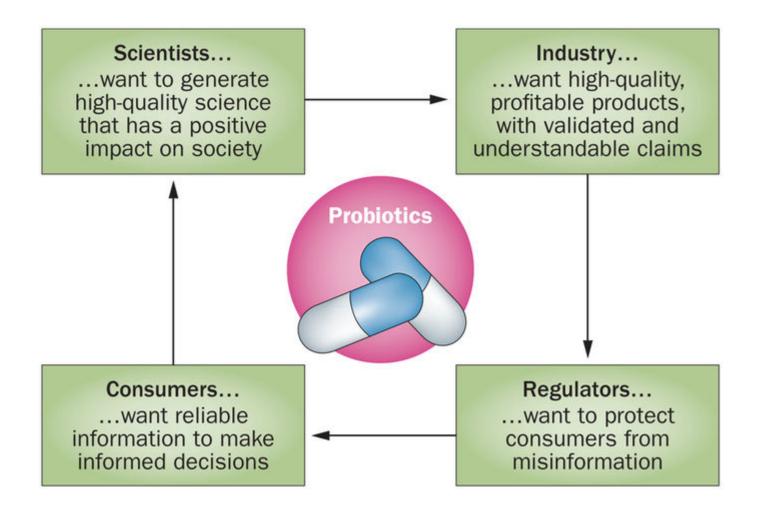
PROBIOTICS DEFINITION

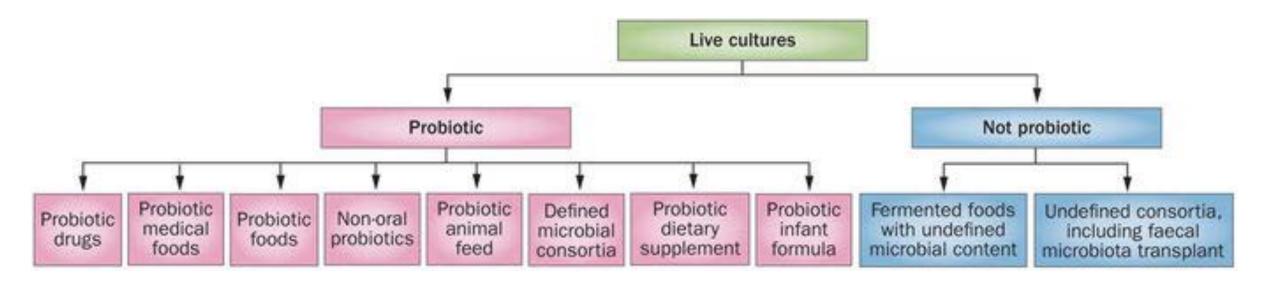

live microorganisms which when administered in adequate amounts confer a health benefit on the host

WHO (FAO/WHO), 2001


live microorganisms that, when administered in adequate amounts, confer a health benefit on the host

International Scientific Association for Probiotics and Prebiotics (ISAPP), 2014


SCIENTIFIC PRODUCTIVITY IN THE FIELD


USA PROBIOTICS MARKET

OBJECTIVES OF STAKEHOLDERS IN THE PROBIOTIC FIELD

OVERALL FRAMEWORK FOR PROBIOTIC PRODUCTS

MOST USED «PROBIOTIC» MICRORGANISMS

Bifidobacterium: B. adolescentis, B. longum subsp. infantis, B. longum subsp. longum, B. breve, B. bifidum, B. animalis subsp. lactis etc

Lactobacillus: L. gasseri, L. reuteri, L. acidophilus, L. casei, L. fermentum, L. johnsonii, L. rhamnosus, L. plantarum, L. paracasei, etc.

Streptococcus thermophilus, Streptococcus salivarius

Propionibacterium spp.

Enterococcus faecium

Bacillus spores: B. cereus, B. clausii, B. subtilis, B. coagulans

Saccharomyces boulardii

Escherichia coli Nissle

Food and dietery supplement dose: 10⁹ / serving

SAFETY

Most probiotic microorganisms are GRAS

Few systemic safety studies in vulnerable population (infants, children, elderly, hospitalized children, hospitalized adults, immunocompromised, pregnant women,....)

Pathogenicity
Infectivity
Toxicity
Antibiotic-resistance (conjucation transfer)

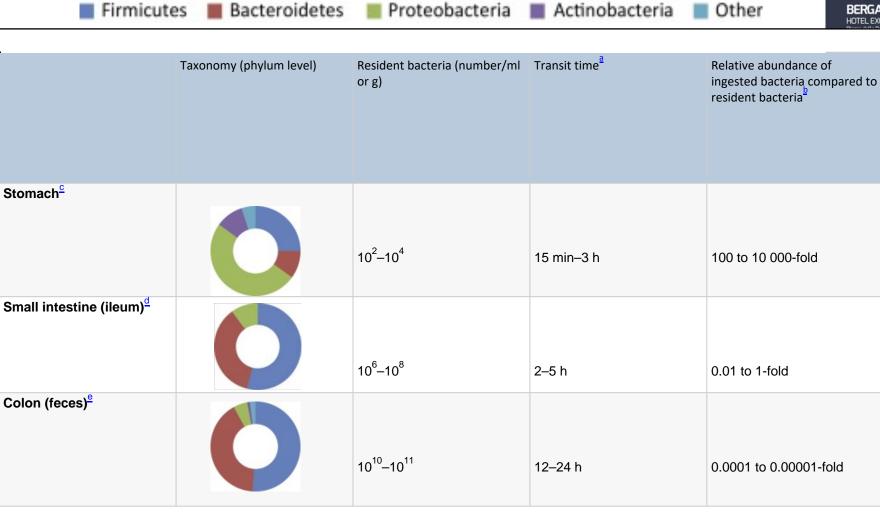
GENOME SEQUENCING

INDUSTRIAL GROWTH AND STABILITY

COMMON PROBIOTIC TRAITS

GENOME SEQUENCING

- Adhesion to the host
- Efflux systems to survive gastric environment
- Hydrolases to confer bile-salt tolerance
- Metabolism optimized for conversion of carbohydrates to lactic acid and, in some cases, a mixture of other acids
- Rapid acidification and low-to-moderate growth yield


INGESTED BACTERIA – MEDIATED MICROBIOME

in gastroenterologia
10° EDIZIONE

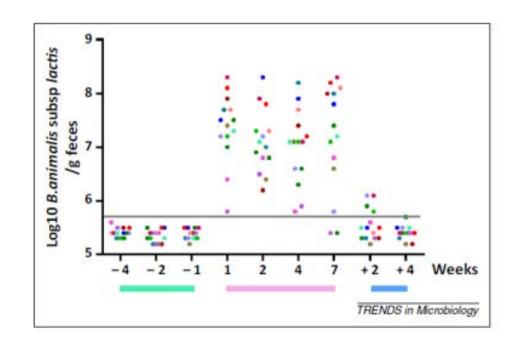
8 e 9 MARZO 2019
BERGAMO
HOTEL EXCELSIOR SAN MARCO

Scientifico: Fabio Pace

Ingested microbial cells:109

FATE OF INGESTED STRAIN

in gastroenterologia
10^ EDIZIONE


8 e 9 MARZO 2019
BERGAMO
HOTEL EXCELSIOR SAN MARCO
Paizza della Papubblica, 6

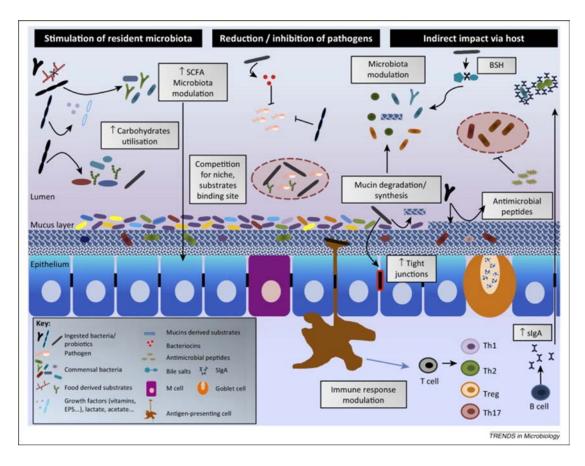
Responsable Scientifico: Fabio Pace

«PERSISTENCE» = fecal quantification of the ingested strain, reflecting the extent of cell death and subsequent replication of surviving cells

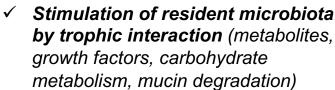
Strain dependent

High inter-individual variability (strains are rarely detected after 1 w)

Preconsumption period


Consumption period

Postconsumption period


Derrien and Vlieg, 2015, Trends Microbiol

TRANSIENT MICROBIOME CAN **IMPACT ON COMPOSITION AND ACTIVITY OF THE RESIDENT COMMUNITY:**

- Reduction/inhibition of pathogens through alteration of the microbial fitness (pH decrease, niche competition, EPS and bacteriocins)
- Indirect impact via host through changes in the gut environment (mucin production, increase of IgA and defensins)

POSSIBLE DISTRIBUTION OF MECHANISMS AMONG **PROBIOTICS**

Rare

Strain-specific effects

- Neurological effects
- Immunological effects
- Endocrinological effects
- Production of specific bioactives

Frequent

Species-level effects

- Vitamin synthesis
- Direct antagonism
- Bile salt metabolism
- Enzymatic activity
- Gut barrier reinforcement Neutralization of carcinogens

Widespread

Among studied probiotics

- Colonization resistance
- Acid and SCFA production
- Regulation of intestinal transit
- Normalization of perturbed microbiota
- Increased turnover of enterocytes
- Competitive exclusion of pathogens

ACCEPTED CORE BENEFITS OF CERTAIN PROBIOTICS

Large number of different probiotic strains belonging to commonly studied species

SUPPORTING A HEALTHY DIGESTIVE TRACT beneficial in the treatment and prevention of GI diseases

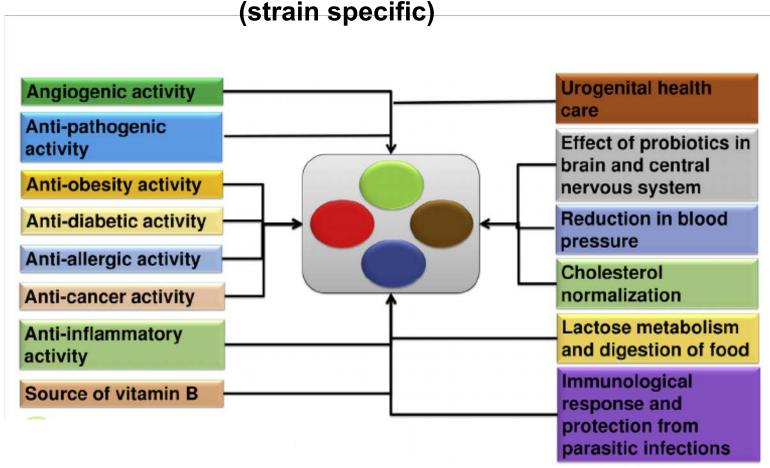
NO SPECIFIC HEALTH CLAIM

ACCEPTED CHARACTERIZATION AT SPECIES LEVEL

no at strain level

Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus

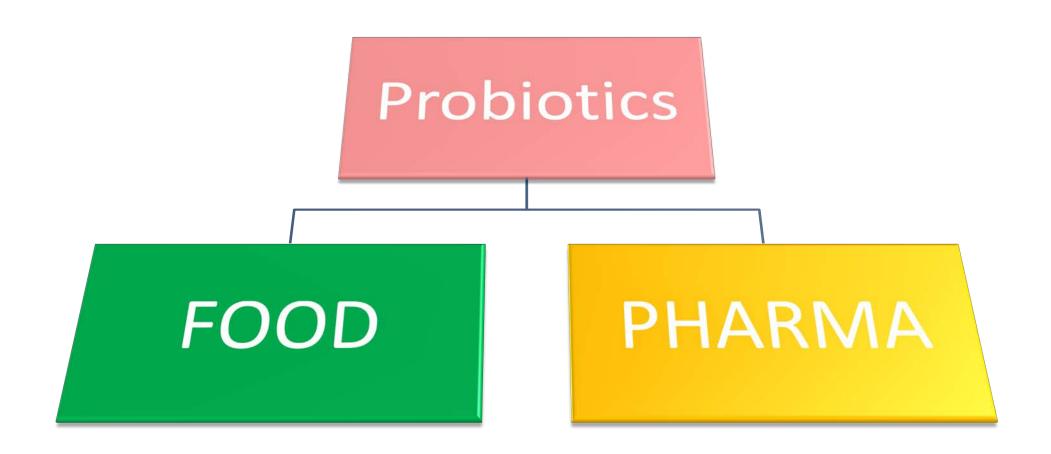
AIDING LACTOSE DIGESTION


mechanism of action: microbial production of betagalactosidase

APPROVED CLAIM

APPLICATIONS OF PROBIOTICS AND THEIR MODE OF ACTION

MEASURE OF THE PROBIOTIC EFFECTS: HERE COMES THE PROBLEM



STUDIES ON HUMAN

- Heterogeneity of chosen strain (or mix of strains), duration of the intervention, dosage
- Heterogeneity of matrix (dairy food, capsule, powder...)
- Study design (comparison with placebo or baseline)
- Chosen population (adults, children, elderly; health, disease)
- Evaluation of the effects on health (long term, short term; therapeutic, preventive; ...)
- Evaluation of the effect on the resident microbiota (different techniques)

STRAINS	COMMERCIAL PRODUCTS	SOURCE
Lactobacillus acidophilus NCFM		
Bifidobacterium lactis HN019 (DR10)Lact. rhamnosus HN001 (DR20)	Sold as ingredient	Danisco (Madison, WI)
Saccharomyces cerevisiae boulardii	Florastor	Biocodex (Creswell, OR)
Bifidobacterium infantis 35,264	Align	Procter and Gamble (Mason, OH)
Lactobacillus fermentum VRI003 (PCC)	Sold as ingredient	Probiomics (Eveleigh, Australia)
Lactobacillus rhamnosus R0011Lactobacillus acidophilus R0052	Sold as ingredient	Institut Rosell (Montreal, Canada)
Lactobacillus acidophilus LA5Lactobacillus paracasei CRL 431	Sold as ingredient	Chr. Hansen (Milwaukee, WI)
Bifidobacterium lactis Bb-12	Sold as ingredient	Chr. Hansen (Milwaukee, WI)
Lactobacillus casei strain Shirota, Bifidobacterium breve strain Yakult	Yakult	Yakult (Tokyo, Japan)
Lactobacillus casei DN-114 001 ("L. casei Immunitas") Bifidobacterium animalis DN173 010 ("Bifidis regularis")	DanActive fermented milkActivia yogurt	Danone (Paris, France)Dannon (Tarrytown, NY)
Lactobacillus reuteri RC-14Lact. rhamnosus GR-1	Femdophilus	Chr. Hansens (Milwaukee, WI)Urex Biotech (London, Ontario, Canada)Jarrow Formulas (Los Angeles, CA)
Lactobacillus johnsonii Lj-1 (same as NCC533 and formerly Lactobacillus acidophilus La-1)	LC1	Nestlé (Lausanne, Switzerland)
Lactobacillus plantarum 299 V	Sold as ingredient; Good Belly juice product	Probi AB (Lund, Sweden); NextFoods (Boulder, Colorado)
Lactobacillus rhamnosus 271	Sold as ingredient	Probi AB (Lund, Sweden)
Lactobacillus reuteri ATCC 55,730 ("L. reuteri Protectis")	BioGaia Probiotic chewable tablets or drops	Biogaia (Stockholm, Sweden)
Lactobacillus rhamnosus GG ("LGG")	Culturelle; Dannon Danimals	Valio Dairy (Helsinki, Finland)The Dannon Company (Tarrytown, NY)
Lactobacillus rhamnosus LB21Lactococcus lactis L1A	Sold as ingredient	Essum AB (Umeå, Sweden)
Lactobacillus salivarius UCC118	_	University College Cork (Cork, Ireland)
Bifidobacterium longum BB536	Sold as ingredient	Morinaga Milk Industry Co. Ltd. (Zama-City, Japan)
Lactobacillus acidophilus LB	Sold as ingredient	Lacteol Laboratory (Houdan, France)
Lactobacillus paracasei F19	Sold as ingredient	Medipharm (Des Moines, Iowa)
Lactobacillus paracasei 33 Lact rhamnosus GM-020 Lact paracasei GMNL-33	Sold as ingredient	GenMont Biotech (Taiwan)
Lactobacillus plantarum OM	Sold as ingredient	Bio-Energy Systems, Inc. (Kalispell, MT)
Bacillus coagulans BC30	Sustenex, Digestive Advantage and sold as ingredient	Ganeden Biotech Inc. (Cleveland, Ohio)
Streptococcus oralis KJ3 Strept uberis KJ2 Strept rattus JH145	ProBiora3EvoraPlus	Oragenics Inc. (Alachua, FL)
Lactobacilli rhamnosus PBO1Lactobacilli gasseri EB01	EcoVag	Bifodan (Denmark), www.ecovag.com

Disease	Strains	Health impact	References
Hyper cholesteromia and cardiovascular diseases	Lactobacillus spp., Bifidobacterium spp., Enterococcus faecium, Lactobacillus plantarum, Propionibacterium freudenreichii, Lactobacillus plantarum	Positive; reduce the dietary cholesterol	Suvarna and Boby, 2005; Parvez et al., 2006; Oxman et al. (2001); Homayouni et al. (2012); Sanders et al. (2005); Nguyen et al. (2013)
Diarrhoea	Lb. rhamnosus, Lb. casei, Bf. lactis, Bf. Bifidum, Sc. Thermophilus, Lactobacillus casei	Positive (Competition with pathogenic bacteria on epithelial cells)	Parvez, Malik, Ah Kang, and Kim (2006)
Antibiotic therapy	Lb. salivarius, Lb. acidophilus, Lb. johnsonii, Enterococcus mundtii, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus strains, Bifidobacterium strains	Positive (Minimize the disruptive effect of antibiotics to normal bacterial flora)	<u>Sanders et al. (2005)</u>
Kidney stones	Lactobacillus RC–14, LactobacillusGR–1, Lactobacillus B–54	Positive (Degrade or reduce the oxalate excretion)	Sanders et al. (2005)
Immunity	Lb. casei Shirota, Lb. rhamnosus, Lb. acidophilus, Bf. lactis, Bacillus circulans, Lactobacillus plantarum	Positive (Enhance the level of immune reactive cells)	Sanders et al. (2005); Homayouni et al. (2012)
Lactose intolerance	Lb. rhamnosus, Lb. Plantarum, Lb. delberukii, Bf. Lactis, Lactobacillus acidophulus	Positive(Digestion of lactose)	Sanders et al. (2005)
Cancer	Bifidobacterium sp., Lb. casei Shirota, Lb. acidophilus, Propionibacterium sp, Lb. rhamnosus	Positive (Detoxify the ingested carcinogens)	Sanders et al. (2005)
Hypertension	Lb. Rhamnosus, Lb. Lactis	Positive (Reduce blood pressure)	Sanders et al. (2005)
Pancreatitis	Lb. rhamnosus GG, Bf. lactis BB–12	Positive (Decrease in occurrence of pancreatic infection)	Pezzilli and Fantini (2006)
Tooth problems	Lactobacillus, Bifidobacterium	Positive, Decrease teeth problems	Darwazeh and Darwazeh (2011); Niers et al. (2009)
Anemia	Lactobacillus	lactobacilli increase the expression of iron transporters in the caecum due to production of propionic acid,	Balamurugan et al. (2010)
Eczema	Escherichia coli, Bifidobacterium bifidum, Bifidobacterium lactis, Lactococcus lactis	Eczema can be cured with probiotics	Niers et al. (2009); Soh et al. (2009); Viljanen and Pohjavuori (2005); Viljanen, Kuitunen et al. (2005)
Food allergies	Escherichia coli, Lactobacillus, Bifidobacterium	Improves immunity of body and reduces food allergies	Soh et al. (2009)
Urinary tract infection	Lactobacillus rhamnosus, Lactobacillus reuteri, L. acidophilus	Urinary tract diseases problems are reduced.	Anukam, Hayes, Summers, and Reid (2009)
Inflammatory Bowel diseases	E. coli, Saccharomyces boulardii, Bifidobacterium longum, B. breve, B infantis, Lactobacillus casei, L. plantarum, L. acidophilus, L. delbrueki subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus	Bowel syndrome and inflammatory bowel disease are reduced	Ventura and Perozzi (2011)

DITTA	MEDICINALE	PRINCIPIO ATTIVO	FORMA FARMACEUTICA
Scharper	BACTOCIN	L plantarum 10 ⁸ UFC	Capsule mollli e soluzione vaginale
Sanofi	BIOFLORIN	Enterococco tipo L.A.B. ceppo SF68. 75 x 10 ⁶ UFC	Capsule rigide
Zambon	CODEX	Saccharomyces boulardii 5 x 10 ⁹ UFC	Capsule e polvere
Proge Medica	ECOCILLIN	L plantarumx 10 ⁹ UFC	Capsule molli vaginali
Sanofi	ENTEROGERMINA	Spore di <i>Bacillus clausii</i> poliantibiotico resistente	Sospensione orale, granulato e capsule
Sigma Tau Industrie Farmaceutiche Riunite	EPTAVIS	S thermophilus 48 x10 ⁹ UFC B brevis, B animalis 22x 10 ⁹ UFC L acidophilus 460 x 10 ⁶ UFC L plantarum 50 x10 ⁶ UFC L paracasei 50 x10 ⁶ UFC L bulgaricus 70x10 ⁶ UFC E faecium 7x10 ⁶ UFC	capsule e granulato per sospensione orale
Bruschettini	LACTEOL	L. fermentum, L. delbrueckii 5x10 ⁹ UFC	capsule e granulato per sospensione orale
Li Pharma	LILACTO	L. plantarum 10 ⁸ UFC	capsule molli vaginali
Akkaeda Pharma	MORELAC	L acidophilus 10 ⁷ UFC L delbrueckii 5 10 ⁶ UFC S thermophilus 4 x 10 ⁹ UFC	polvere per sospensione orale
AlfaSigma	YOVIS	S thermophilus 204x 10 ⁹ UFC B breve, B infantis, B longum 93x10 ⁹ UFC L acidophilus 2x10 ⁹ UFC L plantarum 220x10 ⁶ UFC L casei minimo 220x10 ⁶ UFC L bulgaricus 300x10 ⁶ UFC S faecium 30x10 ⁶ UFC	capsule e granulato per sospensione orale

REGULATORY ASPECTS

L'EFSA, nella valutazione dei claims da autorizzare ai sensi del Regolamento (CE) 1924/2006, sostiene che "incrementare il numero di un qualsiasi gruppo di batteri" come "aumentare i livelli di microflora benefica" non siano in sé effetti benefici sulla salute", e inoltre, che affermazioni come "sostenere una microflora intestinale equilibrata" o "influire beneficamente sulla microflora intestinale" potrebbero essere ritenute benefiche per la salute "in caso di una concomitante diminuzione dei microrganismi potenzialmente patogeni"

EFSA Journal 2009; 7(9) 1232

NO APPROVED HEALTH CLAIM FOR PROBIOTICS

- >300 requests
- >200 probiotic strains or combinations
- >60 beneficial effects claimed

Any claim that imply that contained bacteria are beneficial for health is NOT PERMITTED in EU

Ministero della Salute

DIREZIONE GENERALE PER L'IGIENE E LA SICUREZZA DEGLI ALIMENTI E LA NUTRIZIONE - UFFICIO 4

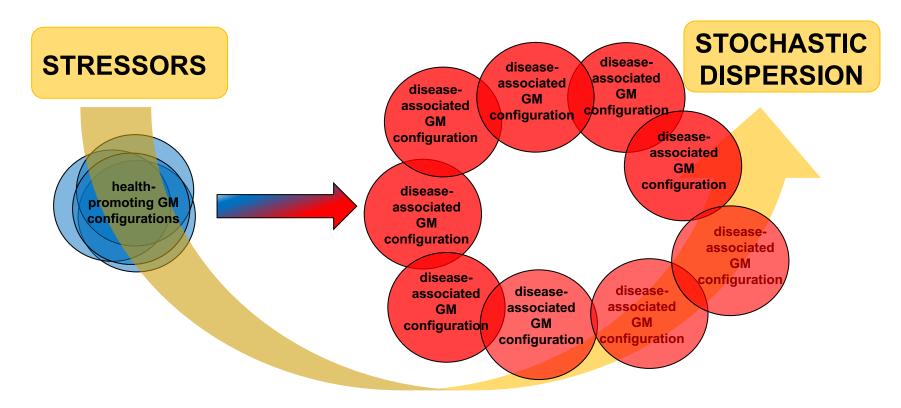
LINEE GUIDA SU PROBIOTICI E PREBIOTICI

Revisione marzo 2018

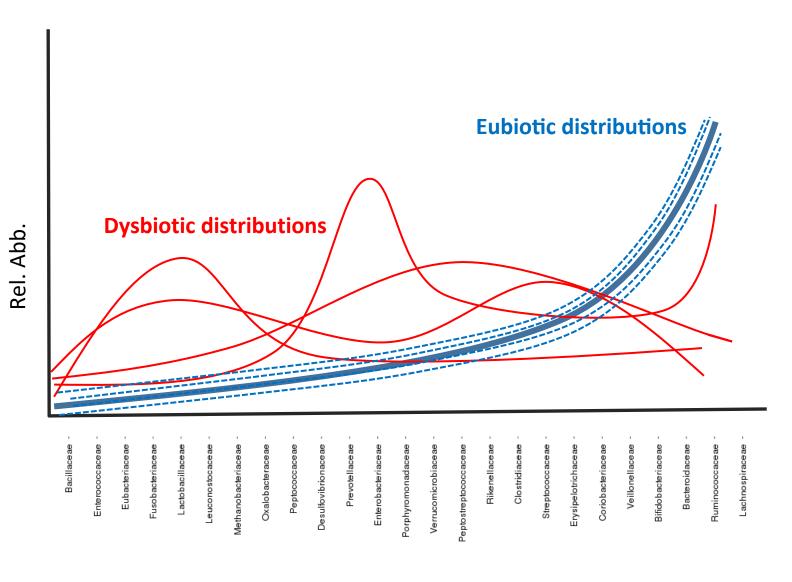
.... prodotti conformi alle presenti linee guida per il loro contenuto di probiotici o prebiotici, risultando plausibilmente in grado di favorire l'equilibrio della flora batterica, possono indicare in etichetta tale effetto fisiologico ed impiegare termini che lo sottendono come "probiotico" e "prebiotico".

Identificazione specie e ceppo: introdotto anche sequenziamento genomico (batteri e lieviti)

Quantità dei microrganismi: 109 cellule vive / porzione

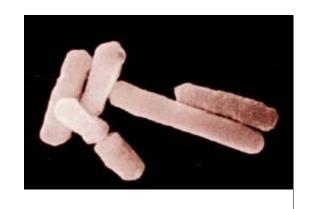


THE MICROBIAL ECOLOGY OF GM DYSBIOSIS, THE ANNA KARENINA PRINCIPLE


"All happy families are alike; each unhappy family is unhappy in its own way"

Leo Tolstoy: Anna Karenina (1878)

All microbiomes are similar; each dysbiotic microbiome is dysbiotic in its own way


EUBIOTIC AND DYSBIOTIC DISTRIBUTIONS OF THE MAJOR GM FAMILIES

COMMON TRAITS OF DYSBIOSIS

- Reduction of SCFA producing bacteria (butyrate producers such as Faecalibacterium, Roseburia, Lachnospiraceae, Eubacterium)
- Increased mucus degradation potential by abnormal mucin degraders that displace Akkermansia
- Reduced hydrogen and methane production combined with increased hydrogen sulphide production. H₂S is toxic for the epithelium
- Increase in abundance of bacteria with LPS endotoxins (Proteobacteria) that can drive inflammation
- Increased potential to manage oxidative stress, i.e. microbes became able to proliferate in close vicinity to the epithelium

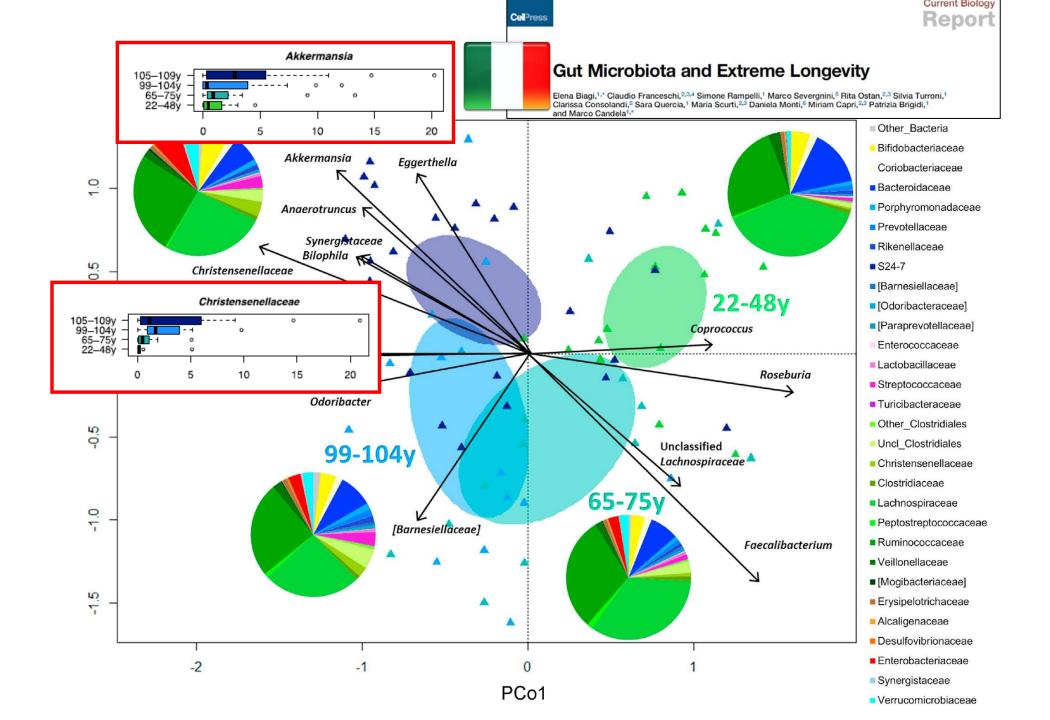
NOVEL CANDIDATED FOR NEW PROBIOTICS

Faecalibacterium prausnitzii Roseburia spp. Eubacterium hallii Akkermansia muciniphila

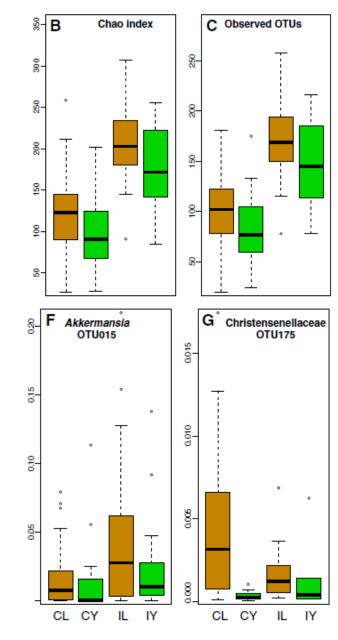
Demonstration of safety and efficacy strain-specific

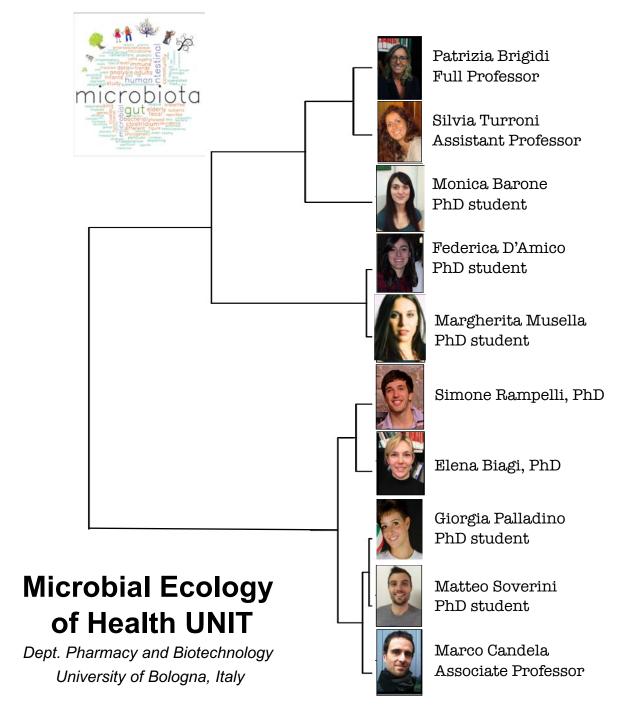
Faecalibacterium prausnitzii

No regulatory approval as a probiotic.


Future probiotic uses are likely to occur when the safety of the species has been demonstrated to satisfy regulatory authority

SUGGESTED INFORMATION REQUIREMENTS FOR NOVEL PROBIOTICS

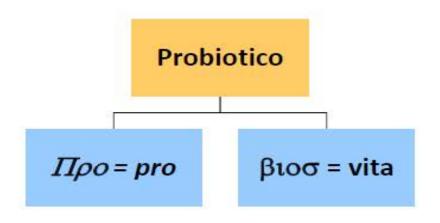

- ✓ Complete genome announcement and annotation. Functional annotation would help in predicting function.
- ✓ Antibiotic resistance profile and conjugation studies to study transferability of antibiotic resistance.
- ✓ **Selection of proper in vivo model**: mouse and rat models do not provide the 'actual' gastrointestinal conditions of humans. Preliminary testing could be essential for newly characterised strains or species.
- ✓ Toxicological studies should be scientifically assessed that the species or strain claimed for its probiotic properties does not produce any toxins.
- ✓ **Target population** should be clearly defined (a probiotic found to be effective in one population may have some adverse effect in another due to varied susceptibility to particular microbes).



Comparison between Italian (I) and Chinese (C) centenarians and young adults

Akkermansia and Christensenellaceae can represent a signature of adaptation to the changes associated with the long living, regardless of lifestyle and dietary habits.

THANK YOU FOR YOUR ATTENTION !!!



Controlling Microbiomes Circulations for Better Food Systems H2020-SFS-2018-2020

PROBIOTICS DEFINITION

live microorganisms which when administered in adequate amounts confer a health benefit on the host

WHO (FAO/WHO), 2001

live microorganisms that, when administered in adequate amounts, confer a health benefit on the host

International Scientific Association for Probiotics and Prebiotics (ISAPP), 2014

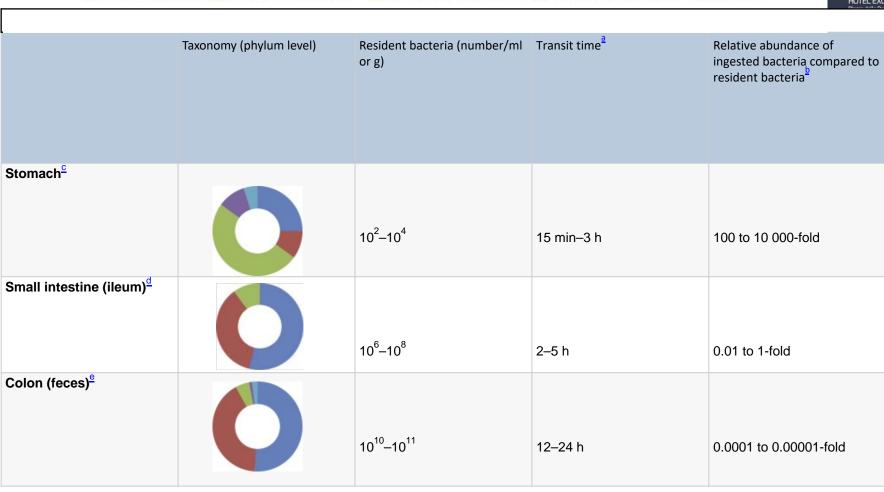
COMMON PROBIOTIC TRAITS

GENOME SEQUENCING

- Adhesion to the host
- Efflux systems to survive gastric environment
- Hydrolases to confer bile-salt tolerance
- Metabolism optimized for conversion of carbohydrates to lactic acid and, in some cases, a mixture of other acids
- Rapid acidification and low-to-moderate growth yield

INGESTED BACTERIA – MEDIATED MICROBIOME

Bacteroidetes


Firmicutes

in gastroenterologia
10° EDIZIONE

8 e 9 MARZO 2019
BERGAMO
HOTEL SOR SAN MARCO
MARCO LAMBOR 6

Scientifico: Fabio Pace

Ingested microbial cells:109

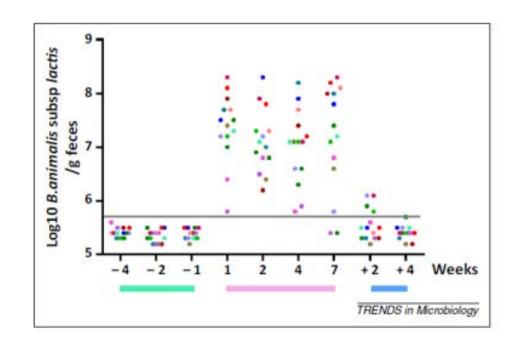
Proteobacteria

Actinobacteria

Other

FATE OF INGESTED STRAIN

in gastroenterologia
10^ EDIZIONE


8 e 9 MARZO 2019
BERGAMO
HOTEL EXCELSIOR SAN MARCO
Paizza della Papubblica, 6

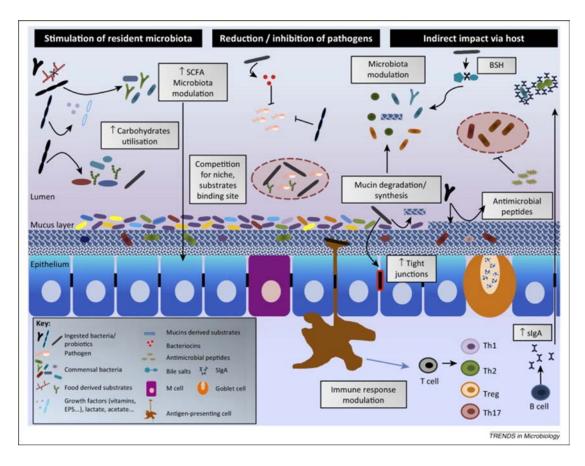
Responsable Scientifico: Fabio Pace

«PERSISTENCE» = fecal quantification of the ingested strain, reflecting the extent of cell death and subsequent replication of surviving cells

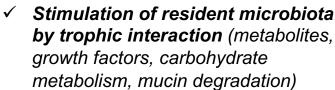
Strain dependent

High inter-individual variability (strains are rarely detected after 1 w)

Preconsumption period


Consumption period

Postconsumption period


Derrien and Vlieg, 2015, Trends Microbiol

TRANSIENT MICROBIOME CAN **IMPACT ON COMPOSITION AND ACTIVITY OF THE RESIDENT COMMUNITY:**

- Reduction/inhibition of pathogens through alteration of the microbial fitness (pH decrease, niche competition, EPS and bacteriocins)
- Indirect impact via host through changes in the gut environment (mucin production, increase of IgA and defensins)

POSSIBLE DISTRIBUTION OF MECHANISMS AMONG **PROBIOTICS**

Rare

Strain-specific effects

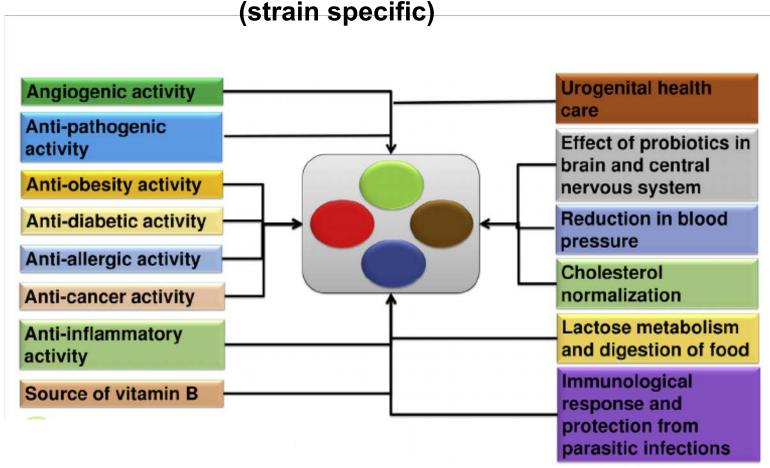
- Neurological effects
- Immunological effects
- Endocrinological effects
- Production of specific bioactives

Frequent

Species-level effects

- Vitamin synthesis
- Direct antagonism
- Bile salt metabolism
- Enzymatic activity
- Gut barrier reinforcement Neutralization of carcinogens

Widespread


Among studied probiotics

- Colonization resistance
- Acid and SCFA production
- Regulation of intestinal transit
- Normalization of perturbed microbiota
- Increased turnover of enterocytes
- Competitive exclusion of pathogens

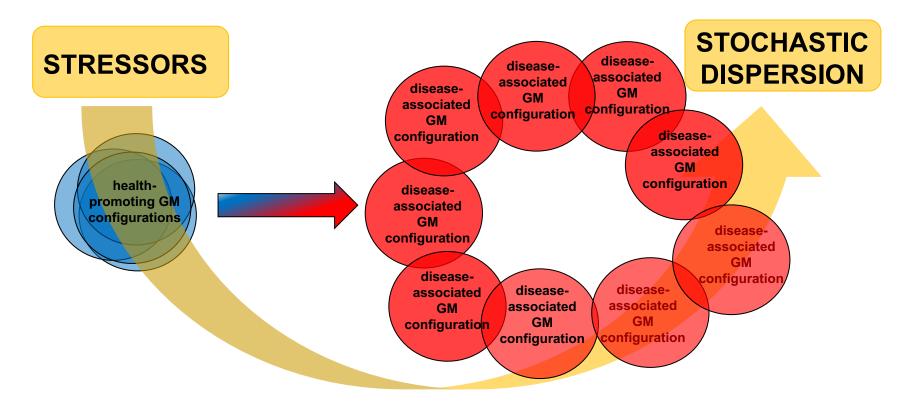
APPLICATIONS OF PROBIOTICS AND THEIR MODE OF ACTION

MEASURE OF THE PROBIOTIC EFFECTS: HERE COMES THE PROBLEM

STUDIES ON HUMAN

- Heterogeneity of chosen strain (or mix of strains), duration of the intervention, dosage
- Heterogeneity of matrix (dairy food, capsule, powder...)
- Study design (comparison with placebo or baseline)
- Chosen population (adults, children, elderly; health, disease)
- Evaluation of the effects on health (long term, short term; therapeutic, preventive; ...)
- Evaluation of the effect on the resident microbiota (different techniques)

THE MICROBIAL ECOLOGY OF GM DYSBIOSIS, THE ANNA KARENINA PRINCIPLE


in gastroenterologia
10^ EDIZIONE

8 e 9 MARZO 2019
BERGAMO
HOTEL EXCELSIOR SAN MARCO
Pazza della Repubblica. 6

Responsable Scientifico: Fabio Pace

"All happy families are alike; each unhappy family is unhappy in its own way"

Leo Tolstoy: Anna Karenina (1878)

All microbiomes are similar; each dysbiotic microbiome is dysbiotic in its own way

SUGGESTED INFORMATION REQUIREMENTS FOR NOVEL PROBIOTICS

- ✓ Complete genome announcement and annotation. Functional annotation would help in predicting function.
- ✓ Antibiotic resistance profile and conjugation studies to study transferability of antibiotic resistance.
- ✓ **Selection of proper in vivo model**: mouse and rat models do not provide the 'actual' gastrointestinal conditions of humans. Preliminary testing could be essential for newly characterised strains or species.
- ✓ Toxicological studies should be scientifically assessed that the species or strain claimed for its probiotic properties does not produce any toxins.
- ✓ **Target population** should be clearly defined (a probiotic found to be effective in one population may have some adverse effect in another due to varied susceptibility to particular microbes).