Regione Lombardia

Cell-free circulating DNA : Test diagnostico ? Test predittivo ?

Silvio Marco Veronese

Struttura Semplice di Patologia Molecolare Struttura Complessa di Anatomia Patologica Dipartimento di Medicina di Laboratorio **Niguarda Cancer Center**

The Biological Basis of Liquid Biopsy

Bodily fluids (blood, urine, saliva, etc.)

- 1. Circulating Tumor Cells (CTCs)
- 2. Cell-free circulating DNA (cf-DNA)
- 3. Cell-free circulating tumor DNA (ct-DNA)
- 4. Small/Long noncoding RNAs
- 5. Exosomes
- 6. Tumor-Educated Platelets (TEPs)

(interaction between blood platelets and tumor cells that alters the RNA profile of platelets and affects tumor growth)

- Circulating tumor DNA (ctDNA) fragments are released by tumor cells into the bloodstream and contain, in principle, defects identical to the tumor cells they originate from.
- Molecular alterations, which can be detected in cell-free DNA (cfDNA), span the types of genomic alterations identified in tumors and include point mutations, rearrangements, and gene copy number variations.
- Free DNA (although fragmented) is quite stable in the circulation with a half-life between 16 minutes and 2.5 hours ("real-time" snapshot of disease burden).
- On the contrary, free RNA molecules do not generally survive in the bloodstream with the exception of microRNAs.

Landmarks in the detection of ctDNAs in patients with different cancers

Methodologies for detecting circulating tumor DNA

Technology	Platform	Sensitivity (%)
Sanger sequencing	Many	10
Next-generation sequencing	Illumina, Life Technologies	2
TAm-Seq	Illumina	2
Quantitative-PCR	Cobas	2
ARMS-PCR	Many	0.1
Scorpion-PCR	Many	0.1
PNA-PCR	Many	0.1
Digital-PCR	Bio-Rad, Life Technologies	0.01
Droplet-PCR	BEAMing, Bio-Rad, Raindance	0.01
CAPP-Seq	Illumina	0.01
ARMS: Amplification refractory r PNA: Peptide nucleic acid.	nutation testing; PCR: Polyme	erase-chain reaction;

CANCER CENTER

Table 1. Continued						
		Paired				
Platform	Study Design	Samples, n	Mutation	Sensitivity, %	Specificity, %	Reference
cobas and BEAMing	Assessment of detection of EGFR-activating mutations and T790M mutations in plasma using both cobas and BEAMing assays compared with tumor tissue genotyping. Patients were enrolled in either an	153	EGFR-activating	Positive % agreement 73% (62%-83%)	Negative % agreement 100% (86%-100%)	Karlovich et al. 2016 ²⁸
	observational study of newly diagnosed or relapsed		EGFR T790M (cobas)	64% (45%-80%)	98% (91%-100%)	
	NSCLC, or the TIGER-X trial (phase 1 study of rociletinib in patients with previously treated <i>EGFR</i> -mutant NSCLC)		EGFR-activating mutations (BEAMing PCR)	82% (70%-90%)	67% (9%-99%)	
			EGFR T790M (BEAMing PCR)	73% (58%-85%)	50% (26%-74%)	
cobas	Comparison of plasma genotyping for EGFR with tissue	238	EGFR (all)	75%	96 %	Mok et al. 2015 ²⁹
	genotyping in patients enrolled on the FASTACT-2 study (intercalated erlotinib or placebo with gemcitabine-		EGFR exon 19 del EGFR L858R	82.5% 62.2%	98.3% 99%	
	platinum followed by maintenance erlotinib or placebo		EGFR G719x	50%	100%	
	in advanced NSCLC)		EGFR L861Q	100%	100%	
NGS	Validation study comparing plasma genotyping utilizing a cancer panel with tissue genotyping in nonsmoker patients with NSCLC who were enrolled on the BioCAST/IFCT-1002 lung cancer study	68	12-amplicon panel (EGFR, PI3KCA, BRAF, KRAS, ERBB2)	58% (43%-71%)	87% (62%-96%)	Couraud et al. 2014 ³⁰
NGS	Evaluation of an ultradeep NGS platform to capture alterations in cfDNA in a panel of 37 lung cancer-related	51	37-gene lung cancer panel	88%	Not available	Li et al. 2016 ¹⁸
	genes (SNV, indels, fusions, and copy number gains). In a subset of patients with acquired resistance to targeted therapy, plasma NGS was able to capture <i>EGFR</i> T790M and additional somatic alterations	16	EGFR T790M	94% (concordance)	Not available	
NGS	Pilot study comparing plasma genotyping with an NGS panel against a reference standard of plasma ddPCR or tissue genotyping in patients with advanced NSCLC	48	62-driver and resistance mutations	77%	100%	Paweletz et. al. 2016 ²⁰
			EGFR or KRAS mutations	79 %	100%	
NGS	Analysis of EGFR mutations in urine and plasma collected from patients enrolled in the TIGER-X trial (phase 1/2	60	<u>Plasma:</u>			Reckamp et al. 2016 ³¹
	study of rociletinib in patients with previously treated		EGFR exon 19 del	87 %	96 %	
	EGFR-mutant NSCLC). This study utilized a short		EGFR L858R	100%	100%	
	with tissue genotyping, which was used as the		EGFR T790M	93%	94 %	
	reference standard		Urine:	(70/	0.49/	
			EGER LASAD	0/%	94% 100%	
			EGER T790M	73%	96%	
			LOINTITION	12/0	/0/0	

Journal of Thoracic Oncology September 2017

CANCER CENTER

Table 1. Continued						
		Paired				
Platform	Study Design	Samples, n	Mutation	Sensitivity, %	Specificity, %	Reference
NGS (eTAm-Seq)	Detection of <i>EGFR</i> T790M mutation status by enhanced tagged amplicon sequencing in patients with <i>EGFR</i> - mutant advanced NSCLC who progressed while receiving first- or second-generation TKI therapy and were ineligible for a new tissue biopsy. Response to osimertinib in patients who were T790M positive by cfDNA analysis was assessed	48	EGFR T790M	50% (detection rate)	Not available	Remon et al. 2017 ³²
PNA-mediated PCR	Validation study comparing detection of <i>EGFR</i> mutations in plasma and tissue from patients enrolled in the EURTAC study (platinum chemotherapy vs. erlotinib in metastatic <i>EGFR</i> -mutant NSCLC)	97	EGFR exon 19 del or L585R	78%	100%	Karachaliou et al. 2015 ³³
Scorpion-ARMS	Detection of plasma <i>EGFR</i> mutations in patients with metastatic NSCLC who were receiving gefitinib monotherapy. Plasma genotyping was compared with tumor genotyping	42	EGFR-sensitizing mutations	85.7%	94.3%	Kimura et al. 2007 ³⁴
Scorpion-ARMS	Detection of EGFR mutations in pretreatment plasma compared with tissue from patients enrolled in the IPASS study (gofftipibly), carboplatin paclitaxel for first	86	EGFR-sensitizing mutations	43.1%	100%	Goto et al. 2012 ³⁵
	the treatment of advanced NSCLC)					
Scorpion-ARMS	Validation study comparing detection of <i>EGFR</i> mutations in plasma and tissue from patients with advanced <i>EGFR</i> -	652	EGFR (all)	65.7% (55.8%-74.7%)	99.8% (99.0%-100%)	Douillard et al. 2014 ³⁶
	mutant NSCLC who were receiving first-line gefitinib on a single-arm clinical study		EGFR exon 19 del EGFR L858R	67.6% (55.5%-78.2%) 61.8% (43.6%-77.8%)	100% (99.4%-100%) 99.8% (99.1%-100%)	
Potrospostivoly Valida	tod Assaus (notrospostivo analysis of sposimons from retrosp	octivoly identif	ind cohorts)			
NGS (CAPP-Seq)	Evaluation utilizing the CAPP-Seq technology to detect	17	Customized panet	oo% (all stages)	90% (all stages)	Newman et al.
	alterations in plasma from patients across all stages of NSCLC		by tumor type	50% (stage I) 100% (stage II-IV)		201437
cobas	Comparison of <i>EGFR</i> mutations in archived plasma and tissue from a cohort of patients with advanced NSCLC	196	EGFR-sensitizing mutations	60.7%	96.4	Weber et al. 2014 ³⁸
Digital PCR	Comparison of plasma <i>EGFR</i> genotyping using digital PCR with tumor genotyping in a cohort of patients with advanced NSCLC	35	EGFR exon 19 del or L858R	92%	100%	Yung et al. 2009 ³⁹
High-resolution melting analysis	Comparison of plasma <i>EGFR</i> genotyping using high- resolution melting analysis with tumor genotyping in a cohort of patients with NSCLC	24	EGFR-sensitizing mutations	91.67%	100%	Hu et al. 2012 ⁴⁰
Mass spectrometry genotyping	Comparison of plasma <i>EGFR</i> genotyping using mass spectrometry with tumor genotyping in a cohort of patients with NSCLC	31	EGFR exon 19 del or L858R	38.9%	84.6%	Brevet et al. 2011 ⁴¹
FDA, U.S. Food and Drug	Administration: PCR, polymerase chain reaction: NGS, next-generation	on sequencing: D	PLC, denaturing high-per	formance liquid chromato	graphy: ddPCR, digital d	roplet polymerase chain

FDA, U.S. Food and Drug Administration; PCR, polymerase chain reaction; NGS, next-generation sequencing; DHPLC, denaturing high-performance liquid chromatography; ddPCR, digital droplet polymerase chain reaction; del, deletion; BEAMing, beads, emulsions, amplification and magnetics; *PIK3CA*, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene; *ERBB2*, erb-b2 receptor tyrosine kinase 2 gene; cfDNA, cell-free DNA; SNV, single-nucleotide variation; eTAm-Seq, enhanced tagged-amplicon sequencing; PNA, peptide nucleic acid; ARMS, amplified refractory mutation system; CAPP-Seq, cancer personalized profiling by deep sequencing.

Regione

ombardia

Tissue

- Insufficient or no available tissue or cells (20-30% of patients do not have accessible tissue)
- Tumor accessibility
- Poor performance status of patient
- Profiling of a "more comprehensively genomic landscape" of alterations
- Cost
- Turn Around Time (TAT)
- Source of fresh material
- Minimally invasive
- Possibility of repeating blood sampling and/or analysis
- Dynamic monitoring of disease (response, stability or progression)
- Early identification of targetable resistance driver alterations

- Gold Standard
- Diagnosis and subtyping
- Detection of alterations in early stage of disease
- Histologic transformation (EMT, etc.)

Areas of application of ctDNA analysis

Regione Lombardia

Cancer diagnosis : - earlier diagnosis of disease (both in symptomatic and presymptomatic patients) Prognosis and risk of relapse : - assessment of risk of progression - identification of patients at high risk of relapse (undertreatment vs overtreatment) **Treatment selection :** - tools for molecular profiling of patients and treatment stratification Monitoring disease burden : - treatment monitoring to identify response or progression (the ideal monitoring assay should be repeatable serially over time with minimal risk to patient and should provide an

accurate read-out of tumor burden)

Sensitivity

Regione Lombardia

CANCER CENTER

The diagnostic value of circulating cell free DNA quantification in non-small cell lung cancer: A systematic review with meta-analysis

Authors	Year	Time of sample collection	Material	Test method	Reference gene	Cutoff value	AUC (95% CI)
Sozzi et al.	2001	Before surgery	Plasma	DNA DipStick	NA	25 ng/mL	0.84 (0.77, 0.90)
Sozzi et al.	2003	Before surgery	Plasma	Real-time PCR	hTERT	10 ng/mL	0.94 (0.91, 0.97)
Xie et al.	2004	NA	Plasma	PicoGreen	NA	21.9 ng/mL	0.86 (0.80, 0.91)
Herrera et al.	2005	Undergoing surgical treatment	Plasma	Real-time PCR	β actin	14 µg/L	0.63 (0.44, 0.82)
Ludovini et al.	2008	After surgical resection	Plasma	Real-time PCR	hTERT	3.25 ng/mL	0.82 (0.75, 0.88)
Ulivi et al.	2008	NA	Serum	Real-time PCR	NA	25 ng/mL	0.92 (0.88, 0.96)
Paci et al.	2009	After informed consent was obtained	Plasma	Real-time PCR	hTERT	4 ng/mL	0.79 (0.71, 0.83)
Yoon et al.	2009	After informed consent was obtained	Plasma	Real-time PCR	β actin	11 ng/mL	0.86 (0.81, 0.91)
Szpechcinski et al.	2009	Before treatment	Plasma	Real-time PCR	β actin	2.78 ng/mL	0.86 (0.67, 0.96)
van der Drif et al.	2010	Before surgery	Plasma	Real-time PCR	β actin	32 ng/mL	0.66 (0.53, 0.80)
Kumar et a.	2010	NA	Plasma	PicoGreen	NA	104.5 ng/mL	0.83 (0.77, 0.89)
Catarino et al	2012	Refore treatment	Plasma	Real_time PCR	LTERT	20.ng/mI	0.88 (0.84, 0.92)
for disc	rim	inating NSCLC fro	m hea	althy individu	uals. Con	e biom mbinat	ion of =
for disc cfDNA	rim quar ons.	inating NSCLC fro ntification with ot	m hea her tu	althy individu Imor markers	uals. Con would	mbinat be the f	ion of
for disc cfDNA directic	rim quar	inating NSCLC fro ntification with ot	m hea hertu	althy individu Imor markers	would	mbinat be the f	
for disc cfDNA cfDNA directic	rim quar ons.	inating NSCLC fro ntification with ot	n hea hertu	althy individu Imor markers Catarino et al. 20 Kumar et a. 20	would	mbinat be the f	arker) ion of = uture 0.9 0.83 [0.78 - 0.1 0.52 [0.30 - 0.1]
cfDNA cfDNA directio	rim quar ons.	inating NSCLC fro ntification with ot	n hea hertu	althy individu Imor markers Catarino et al. 20 Kumar et a. 20 van der Drif et al. 20	would	mbinat be the f	arker) ion of = uture 0.9 0.83 [0.78 - 0.0 0.52 [0.30 - 0.7
cfDNA cfDNA directio	quar	inating NSCLC fro ntification with ot	n hea hertu	Catarino et al. 20 Kumar et al. 20 Szpechcinski et al. 20 Szpechcinski et al. 20	would	be the f	arker) ion of = uture 0.9 0.83 (0.78 - 0.4 0.52 (0.39 - 0.3 0.55 (0.89 - 0.3 0.57 (0.47 - 0.0
cfDNA cfDNA cfDNA directio Catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2010 zpechcinski et al. 2009 Paci et al. 2009	quar	a relative inating NSCLC fro ntification with ot	87] 80] 96] 96]	Catarino et al. 20 Kumar et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Yoon et al. 20 Parci et al. 20 Parci et al. 20	would	be the f	arker) ion of uture 0.9 0.52 [0.30 - 0.1 0.55 [0.89 - 0.4 0.55 [0.89 - 0.4 0.55 [0.89 - 0.4 0.55 [0.89 - 0.4 0.55 [0.89 - 0.4] 0.55 [0.89 - 0.4]
cfDNA cfDNA cfDNA directio catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2010 zpechcinski et al. 2009 Paci et al. 2009 Ulivi et al. 2009	quar		n hea hertu	Catarino et al. 20 Kumar et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Yoon et al. 20 Paci et al. 20 Ulivi et al. 20 Ulivi et al. 20 Ulivi et al. 20 Ulivi et al. 20 Paci et al. 20 Ulivi et al. 20 Paci	would	be the f	arker ion of uture 0.83 (0.78 - 0.1 0.52 (0.39 - 0.3 0.55 (0.89 - 0.3 0.57 (0.47 - 0.4 0.75 (0.68 - 0.3 0.75 (0.78 - 0.3 0.75 (0.68 - 0.3 0.75 (0.78 - 0.3))))))))))))))))))))))))))))))))))))
cfDNA cfDNA cfDNA cfDNA catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2010 zpechcinski et al. 2009 Paci et al. 2009 Ulivi et al. 2008 Ludovini et al. 2008	quar		n hea her tu	Catarino et al. 20 Kumar et al. 20 Kumar et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Yoon et al. 20 Ulivi et al. 20 Ulivi et al. 20 Ulivi et al. 20 Ludovini et al. 20	would	be the f	arker ion of uture 0.83 (0.78 - 0.1 0.52 (0.39 - 0.3 0.55 (0.89 - 0.3 0.57 (0.47 - 0.1 0.75 (0.48 - 0.4 0.78 (0.68 - 0.4 0.92 (0.85 - 0.4) 0.92 (0.85 - 0.4) 0.93 (0.93 - 0.4) 0.9
cfDNA cfDNA cfDNA directio catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2010 yaon et al. 2009 Paci et al. 2009 Ulivi et al. 2009 Ulivi et al. 2008 Ludovini et al. 2008	quar		87] 80] 80] 80] 80] 80] 80] 80] 80] 80] 80	Catarino et al. 20 Catarino et al. 20 Kumar et a. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Voon et al. 20 Uivi et al. 20 Uivi et al. 20 Ludovini et al. 20 Herrera et al. 20	als. Col swould	be the f	arker ion of uture 0.83 (0.78 - 0.1 0.52 (0.30 - 0.1 0.55 (0.89 - 0.4 0.57 (0.47 - 0.4 0.75 (0.48 - 0.4 0.78 (0.68 - 0.4 0.78 (0.68 - 0.4 0.78 (0.68 - 0.4 0.92 (0.85 - 0.4) 0.92 (0.85 - 0.4 0.92 (0.85 - 0.4) 0.92 (0.85 - 0.4) 0.93 (0.93 - 0.4) 0.93 (
cfDNA cfDNA cfDNA directio catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2019 Yoon et al. 2009 Paci et al. 2009 Ulivi et al. 2009 Ulivi et al. 2008 Ludovini et al. 2008 Herrera et al. 2004	quar		87] 80] 80] 80] 80] 80] 96] 96] 96] 96] 96] 96] 96] 96	Catarino et al. 20 Catarino et al. 20 Kumar et a. 20 Van der Drif et al. 20 Van der Drif et al. 20 Van der Drif et al. 20 Voon et al. 20 Paci et al. 20 Ulivi et al. 20 Ludovini et al. 20 Herrera et al. 20 Xie et al. 20	als. Con swould	e blom mbinat be the f	O.83 [0.78 - 0.4 O.95 [0.89 - 0.4 O.95 [0.89 - 0.4 O.75 [0.48 - 0.4 O.92 [0.85 - 0.4 O.92 [0.43 - 0.4 O.92 [0.43 - 0.4 O.95 [0.43 - 0.4] O.95 [0.43 - 0.4
Catarino et al. 2012 Kumar et a. 2010 Kumar et a. 2010 Van der Drif et al. 2010 Van der Drif et al. 2010 Van der Drif et al. 2010 Voon et al. 2009 Paci et al. 2009 Ulivi et al. 2009 Ulivi et al. 2009 Kudovini et al. 2008 Kuerera et al. 2004 Sozzi et al. 2004 Sozzi et al. 2004	quar		87] mhea hertu 80] 80] 96] 96] 96] 96] 98] 89] 89] 89] 89] 89] 94]	Catarino et al. 20 Catarino et al. 20 Kumar et a. 20 Van der Drif et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Paci et al. 20 Ulivi et al. 20 Ulivi et al. 20 Ludovini et al. 20 Herrera et al. 20 Xie et al. 20 Sozzi et al. 20	als. Con swould	e blom mbinat be the f	O.83 [0.78 - 0.4 O.95 [0.89 - 0.5 O.75 [0.48 - 0.4 O.75 [0.48 - 0.4] O.75 [0.48 - 0.4 O.75 [0.48 - 0.4] O.75 [0.48 - 0.4
cfDNA cfDNA cfDNA cfDNA cfDNA cfDNA cfDNA catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2010 van der Drif et al. 2010 yoon et al. 2009 Paci et al. 2009 Ulivi et al. 2009 Ulivi et al. 2008 Ludovini et al. 2008 Herrera et al. 2004 Sozzi et al. 2003 Sozzi et al. 2001	quar		87] mhea hertu 88] 86] 96] 96] 96] 96] 96] 98] 98] 98] 98] 98] 98] 98] 98] 98]	Catarino et al. 20 Catarino et al. 20 Kumar et a. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Ulivi et al. 20 Ulivi et al. 20 Ludovini et al. 20 Herrera et al. 20 Xie et al. 20 Sozzi et al. 20 Sozzi et al. 20	als. Con swould	e blom mbinat be the f	arker ion of uture 0.83 [0.78 - 0.4 0.52 [0.30 - 0.3 0.57 [0.48 - 0.4 0.75 [0.48 - 0.4 0.78 [0.68 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.92 [0.85 - 0.4 0.93 [0.43 - 0.4 0.95 [0.89 - 0.4 0.95 [0.80 - 0.4 0.95 [0.80 - 0
cf for disc cfDNA cfDNA directio catarino et al. 2012 Kumar et a. 2010 van der Drif et al. 2010 van der Drif et al. 2010 yaci et al. 2009 Paci et al. 2009 Ulivi et al. 2009 Ulivi et al. 2008 Ludovini et al. 2008 Eudovini et al. 2008 Sozzi et al. 2003 Sozzi et al. 2001 COMBINED	quar		87] mhea hertu 88] 86] 96] 96] 96] 96] 96] 98] 98] 98] 98] 98] 98] 98] 98] 98] 98	Catarino et al. 20 Catarino et al. 20 Kumar et a. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Van der Drif et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Paci et al. 20 Ulivini et al. 20 Ludovini et al. 20 Herrera et al. 20 Xie et al. 20 Sozzi et al. 20 Sozzi et al. 20 Sozzi et al. 20	als. Con swould	e blom mbinat be the f	arker ion of uture 0.83 [0.78 - 0.4 0.52 [0.30 - 0.7 0.95 [0.89 - 0.3 0.75 [0.48 - 0.4 0.75 [0.48 - 0.4 0.75 [0.48 - 0.4 0.75 [0.48 - 0.4 0.92 [0.85 - 0.5 0.61 [0.48 - 0.1 0.95 [0.89 - 0.3 0.95 [0.89 - 0.3 0.95 [0.89 - 0.3 0.95 [0.89 - 0.3 0.95 [0.89 - 0.3 0.86 [0.72 - 0.4 0.85 [0.72 - 0.4] 0.85 [0.72 - 0.4 0.85 [0.72 - 0.4] 0.85 [0
Comparison of the second secon	quar		87] mhea hertu 88] 86] 96] 96] 96] 96] 96] 98] 98] 98] 98] 98] 98] 98] 98] 98] 98	Catarino et al. 20 Catarino et al. 20 Kumar et a. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Van der Drif et al. 20 Szpechcinski et al. 20 Paci et al. 20 Ulivini et al. 20 Ludovini et al. 20 Ludovini et al. 20 Ludovini et al. 20 Kumar et al. 20 Sozzi et al. 2	als. Con swould	e blom mbinat be the f	arker ion of uture 0.83 [0.78 - 0.4 0.52 [0.30 - 0.7 0.95 [0.89 - 0.3 0.75 [0.48 - 0.4 0.75 [0.48 - 0.4 0.75 [0.48 - 0.4 0.75 [0.48 - 0.4 0.92 [0.85 - 0.5 0.61 [0.48 - 0.1 0.95 [0.89 - 0.3 0.85 [0.77 - 0.5 0.85 [0.77 - 0.5]

0.3

Specificity

Lung Cancer 100 (2016) 63-70

1.0

The potential of liquid biopsies for the early detection of cancer

able 1. Biological and technical differences for applying liquid biopsy technologies on precancers and earlier stages of neoplastic development versus advanced cancers			
Parameter	Precancers/early stages	Advanced cancers	
Size of lesion	Usually small (< 1 cm ³)	Large (≥1 cm³)	
Clinical signs	Usually none	Apparent	
Detectable by imaging	Often not detectable	Yes	
Biology of lesion	May range from favorable to unfavorable (refs. 44, 45)	Advanced cancers have in general unfavorable (sub)clones (ref. 6)	
Presence of established other tumor markers (e.g., PSA, CEA, CA 125)	Uncertain (ref. 129)	Frequently available, but without high specificity/sensitivity; useful for disease monitoring (ref. 129)	
Knowledge of genes to be targeted in liquid biopsy assays	Often unknown (refs. 78, 80)	Usually known or can be established from available tumor tissue (refs. 3, 35, 73)	
Established driver genes	Often unknown (refs. 130, 131)	Usually known (refs. 3, 35)	
Release of tumor DNA into the circulation	Uncertain (refs. 42, 80)	At stage III and IV disease close to 100% of patients (ref. 42)	
Applicable plasma DNA technologies	Usually focused high-sensitivity assays (refs. 16–18)	Broad range of targeted and untargeted approaches (refs. 16–18)	
Option of proximal sampling	Only if endangered tissue is known (refs. 16, 17)	In selected tumor entities, but frequently not necessary	
Option to design personalized assays	Possible, provided that tissue is available (refs. 73, 84, 85)	Tissue is usually available, can be designed for truncal and branch mutations (refs. 73)	
Expected VAF of somatic mutations in blood	Extremely low, if present at all (refs. 42, 80)	Frequently high (refs. 32, 42, 107, 132)	
Tumor heterogeneity	Relatively low (refs. 6, 133)	High (refs. 6, 133)	
Presence of potentially confounding mutations	In particular, persons with increased age may have acquired cancer-associated mutations without ever developing cancer (refs. 65, 71, 72)	Distinction between driver and passenger mutations needed for disease monitoring (ref. 35)	
Presence of potentially confounding clones	Clonal expansion of non-tumorous tissue may mimic a malignant event (refs. 65, 67-70)	Likely that all metastatic sites are reflected in plasma DNA analysis (ref. 134)	
Detection of SCNAs	Hard to detect due to low VAF at this disease stage (refs. 23, 27)	Often informative and may indicate evolution of novel clones (ref. 32)	
Availability of established clinical guidelines	None	Emerging, e.g., EGFR mutation testing as blood-based companion diagnostic for patients with NSCLC	

Categories of resistance mechanisms in patients at progression with EGFR-TK inhibitors :

1. Secondary mutations in the EGFR gene

(**p.T790M**, p.L747S, p.D761Y,p.T854A)

2. Activation of bypass pathways

(HER2 ampl./mutations, MET ampl./mutations, HGF overexpression, IGF-IR activation, VEGF-VEGFRs interaction, FGFRs activation, PDGF-PDGFRs interaction, AXL overexpression, excess secretion of IL-6)

3. Abnormal downstream pathways

(KRAS, BRAF and PIK3CA mutations, loss of PTEN, aberrant expression of NF1)

4. Histologic transformation (EMT, SCLC, SCC, ecc.)

Regione Lombardia

AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer

Pasi A. Jänne, M.D., Ph.D., James Chih-Hsin Yang, M.D., Ph.D., Dong-Wan Kim, M.D., Ph.D., David Planchard, M.D., Ph.D., Yuichiro Ohe, M.D., Suresh S. Ramalingam, M.D., Myung-Ju Ahn, M.D., Ph.D., Sang-We Kim, M.D., Ph.D., Wu-Chou Su, M.D., Leora Horn, M.D., Daniel Haggstrom, M.D., Enriqueta Felip, M.D., Ph.D., Joo-Hang Kim, M.D., Ph.D., Paul Frewer, M.Sc., Mireille Cantarini, M.D., Kathryn H. Brown, Ph.D., Paul A. Dickinson, Ph.D., Serban Ghiorghiu, M.D., and Malcolm Ranson, M.B., Ch.B., Ph.D.

N Engl J Med 2015;372:1689-99.

Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non–Small-Cell Lung Cancer

Geoffrey R. Oxnard, Kenneth S. Thress, Ryan S. Alden, Rachael Lawrance, Cloud P. Paweletz, Mireille Cantarini, James Chih-Hsin Yang, J. Carl Barrett, and Pasi A. Jänne

JOURNAL OF CLINICAL ONCOLOGY VOLUME 34 · NUMBER 28 · OCTOBER 1, 2016

Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non–Small-Cell Lung Cancer

Geoffrey R. Oxnard, Kenneth S. Thress, Ryan S. Alden, Rachael Lawrance, Cloud P. Paweletz, Mireille Cantarini, James Chih-Hsin Yang, J. Carl Barrett, and Pasi A. Jänne

JOURNAL OF CLINICAL ONCOLOGY VOLUME 34 · NUMBER 28 · OCTOBER 1, 2016

Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non–Small-Cell Lung Cancer

Geoffrey R. Oxnard, Kenneth S. Thress, Ryan S. Alden, Rachael Lawrance, Cloud P. Paweletz, Mireille Cantarini, James Chih-Hsin Yang, J. Carl Barrett, and Pasi A. Jänne

JOURNAL OF CLINICAL ONCOLOGY VOLUME 34 · NUMBER 28 · OCTOBER 1, 2016

A proposed paradigm for use of plasma genotyping for epidermal growth factor receptor (EGFR) T790M

Regione

Lombardia

NEW ENGLAND JOURNAL of MEDICINE November 20, 2017.

Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer

J.-C. Soria, Y. Ohe, J. Vansteenkiste, T. Reungwetwattana, B. Chewaskulyong,
K.H. Lee, A. Dechaphunkul, F. Imamura, N. Nogami, T. Kurata, I. Okamoto,
C. Zhou, B.C. Cho, Y. Cheng, E.K. Cho, P.J. Voon, D. Planchard, W.-C. Su,
J.E. Gray, S.-M. Lee, R. Hodge, M. Marotti, Y. Rukazenkov,
and S.S. Ramalingam, for the FLAURA Investigators*

Mechanisms of resistance to 3rd-generation EGFR TKIs

Resistance Mechanism ^{23,29,56,60,62}	No. (%)
Total No. of patients	35
C797S/T790M	8 (23)ª
T790M Maintained (no clear resistance mechanism identified)	12 (34)
Loss of T790M	10 (29)
MET Amp/T790-wt	1 (3)
ERBB2(Her2) Amp/T790-wt	1 (3)
SCLC/T790-wt	3 (9)

JAMA Oncology July 2016

Custom SCLC

cfDNA panel

MYC

MYCL1

MYCN

PIK3CA

KIT

BRAF

TP53

RB1

PTEN

NOTCH1

NOTCH2

NOTCH3

27 patients with SCLC were

consented and enrolled

Longitudinal blood samples

were collected

NGS of cfDNA from plasma

samples

Results were correlated to

Longitudinal Cell-Free DNA Analysis in Patients with Small Cell Lung Cancer Reveals Dynamic Insights into Treatment Efficacy and Disease Relapse

Karinna Almodovar, PhD,^{a,*} Wade T. Iams, MD,^{a,*} Catherine B. Meador, MD, PhD,^b Zhiguo Zhao, MS,^c Sally York, MD, PhD,^{a,d} Leora Horn, MD,^{a,d} Yingjun Yan, MS,^a Jennifer Hernandez, BS,^e Heidi Chen, PhD,^c Yu Shyr, PhD,^c Lee P. Lim, PhD,^e Christopher K. Raymond, PhD,^e Christine M. Lovly, MD, PhD^{a,b,d,*}

Regione

Lombardia

CANCER CENTER

Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling

CAncer Personalized Profiling by deep sequencing (CAPP-seq) a NGS-based method that tracks multiple mutations per patient, achieving lower <u>limits of detection ~0.002%</u> We retrospectively profiled 255 blood and tissue samples from **40 patients** with localized lung cancers being treated with curative-intent first-line therapies and **54 healthy adults**

Regione

ombardia

Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity

Peter Ballard¹, James W.T. Yates², Zhenfan Yang³, Dong-Wan Kim⁴, James Chih-Hsin Yang⁵, Mireille Cantarini⁶, Kathryn Pickup¹, Angela Jordan¹, Mike Hickey⁷, Matthew Grist¹, Matthew Box¹, Peter Johnström^{8,9}, Katarina Varnäs⁹, Jonas Malmquist⁹, Kenneth S. Thress¹⁰, Pasi A. Jänne¹¹, and Darren Cross²

Clin Cancer Res; 22(20) October 15, 2016

Table 2. Distribution to mouse brain of osimertinib, gefitinib, rociletinib, and afatinib following oral administration

	Osimertinib	Gefitinib	Rociletinib	Afatinib
Dose (mg/kg)	25	6.25	100	7.5
Plasma C _{max} (µmol/L)	0.82	0.82	3.32	0.14
Brain Cmax (µmol/L)	2.78	0.17	BLQ	BLQ
Brain/plasma C _{max} ratio	3.41	0.21	<0.08	<0.36

NOTE: Doses equivalent to clinical doses or reported previously. Abbreviation: BLQ, below limit of quantification (rociletinib 0.25μmol/L, afatinib 0.05 μmol/L); C_{max}, maximum plasma concentration.

Regione

ombardia

T790M *EGFR* Mutation Detection in Cerebrospinal Fluid and Response to Osimertinib in a Lung Cancer Patient with Meningeal Carcinomatosis

Hugo Gortais, MD, Catherine Daniel, MD, François-Clément Bidard, MD Department of Medical Oncology, Curie institute, Paris, France

Emmanuelle Jeannot, PhD, Céline Callens, MD, Luc Cabel, MD Department of Genetics, Curie institute, Paris, France

Journal of Thoracic Oncology

September 2017 Volume 12, Issue 9, Pages e138–e139

Analysis of EGFR mutation status in blood and CSF in lung adenocarcinoma patients with EGFR mutation and CNS metastasis by ddPCR Y. Sen, Q. Wang

ESMO Asia 2017

In which patients and clinical situations can plasma genotyping assays be utilized?

ombardia

- Current evidence from the various validation studies support the use of plasma • genotyping in patients with newly diagnosed disease before they begin treatment and in patients with acquired resistance to treatment and clear disease progression.
- Patients with metastatic NSCLC and acquired resistance to targeted therapy • represent an additional population in which validated plasma genotyping assays are useful in identifying resistance mechanisms and guiding subsequent therapy.
- The presence of increased disease burden (increasing number of metastatic sites, • liver and bone metastases in particular) has been previously demonstrated to predict for increased sensitivity of plasma genotyping assays.
- Studies in primary central nervous system tumors suggest that the capability to • detect tumor cfDNA in the plasma in this setting has limited sensitivity.
- Individual clinical situations in which initial biopsy yielded insufficient tissue for • genotyping, repeat biopsy is anatomically difficult or an urgent clinical need exists to identify potentially targetable genomic alterations represent scenarios in which plasma genotyping may be potentially useful.

Existing challenges for liquid biopsy applications

- The clinical use of liquid biopsies will depend on the practical advantages for patients and clinicians, the infrastructure required and its cost-effectiveness.
- Tissue biopsies currently represent the standard of tumor diagnosis
- They only reflect a single point in time of a single site of the tumor
- Such a sampling method is thus inadequate for a comprehensive characterization of a tumor, as it has been demonstrated that various areas within the primary tumor or metastases can in fact harbor different genomic profiles
- Whether or not ctDNA does actually indeed offer a full representation of a patient's cancer (all existing metastases contribute to the ctDNA, CTCs, and exosomes found in the bloodstream, or if all tumor cells release an equal amount of ctDNA into the circulation)

Existing challenges for liquid biopsy applications

- The molecular genetic diversity within a tumor can also alter over time, rendering future treatment decisions based on historical biopsy information potentially inaccurate and suboptimal
- A more mature understanding of the biology behind ctDNA, CTCs, exosomes and platelets
- Variability in ctDNA levels in different stages of the disease
- Pre-analytical steps [collection of bioliquids (e.g., blood, serum, plasma), centrifugation settings, isolation reagents, and storage conditions] should be potentially standardized
- Analytical steps (mutational analysis procedures, NGS assays and sequencing platforms themselves, etc.) should be potentially validated for their use into clinical settings
- The need to evaluate the clinical relevance of ctDNA at various time points depending on the application (patient stratification, evaluation of treatment response, efficacy and resistance)

Regione Lombardia

12 Dicembre 2017

NOVITA ED AGGIORNAMENTI NEL TRATTAMENTO DEL NSCLC CON MUTAZIONI EGFR

ASST - Grande Ospedale Metropolitano Niguarda, Milano

silviomarco.veronese@ospedaleniguarda.it

Molecular Adequacy of Image-Guided Rebiopsies for Molecular Retesting in Advanced Non-Small Cell Lung Cancer: A Single-Center Experience

Nadza Tokaca, MRCP, BM BCh,^a Sarah Barth, MRCP,^a Mary O'Brien, MRCP, MD,^a Jaishree Bhosle, MRCP, PhD,^a Nicos Fotiadis, FRCR, MD, PhD,^b Andrew Wotherspoon, MRCPath, MB BCh,^c Lisa Thompson, PhD,^d Sanjay Popat, MRCP, PhD^{e,*}

> Journal of Thoracic Oncology Vol. 13 No. 1: 63-72

Original Histological Subtype	n	Rebiopsy Histologie
Adenocarcinoma	38	Adenocarcinoma
		NSCLC NOS
		Poorly differentiated
Squamous cell carcinoma	9	Squamous cell carcin
		Adenocarcinoma
		NSCLC NOS
		Pleomorphic carcinor
NSCLC NOS	4	NSCLC NOS
		Squamous cell carcin
Adenosquamous carcinoma	1	Adenocarcinoma
Total ^a	52	Concordant
		Discordant

NOS, not otherwise specified; TTF-1, thyroid transcription factor 1.

63.6% of cases. The rates of complications were 15% for pneumothorax, 3% for pneumothorax requiring chest drain, and 8% for hemoptysis.

~?

200

Regione Lombardia

