

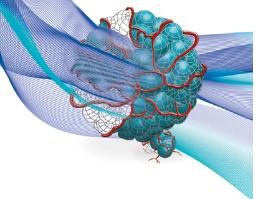
14-15 MARZO 2019 CREMONA

SALA DEI QUADRI PALAZZO DEL COMUNE Piazza Stradivari - Ingresso da Via dei Gonfalonieri

Lectures for training: Discussione

Maria Vittoria Dieci

Università di Padova Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche Istituto Oncologico Veneto I.R.C.C.S.


Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Comparison of primary breast cancer and paired metastases: biomarkers discordance influence on outcome and therapy

Elena Ongaro^{1,2}, Lorenzo Gerratana^{*,1,3}, Marika Cinausero^{1,2}, Giacomo Pelizzari^{1,3}, Elena Poletto¹, Manuela Giangreco^{3,4}, Claudia Andreetta¹, Stefano Pizzolitto⁵, Carla Di Loreto^{3,6}, Alessandro Marco Minisini¹, Mauro Mansutti¹, Stefania Russo¹, Gianpiero Fasola¹ & Fabio Puglisi^{3,7}

Future ONCOLOGY

Original Study

Check for updates

Determinants of Last-line Treatment in Metastatic Breast Cancer

Marika Cinausero,^{1,2} Lorenzo Gerratana,^{1,2} Elisa De Carlo,^{1,2} Donatella Iacono,^{1,2} Marta Bonotto,^{1,2} Valentina Fanotto,^{1,2} Vanessa Buoro,^{1,2} Debora Basile,^{1,2} Maria Grazia Vitale,^{1,2} Karim Rihawi,³ Gianpiero Fasola,² Fabio Puglisi^{1,4}

Comparison of primary BC and paired metastasis: summary

- Retrospective cohort of 232 mBC patients with matched tumor samples
- Conversion rate: ER→12.7% (loss>gain); PgR→49.7% (loss>gain), Ki67→35% (gain>loss)
- Tumor phenotype discordance: 22%, shift to more aggressive subtype was more common, enrichment in LumB and TN on metastates
- Prior tax or anthra associated with PgR loss (not endocrine Tx)
- Prior tax or AI associated with ER reduction
- Prognostic impact: concordant ER+>Loss ER>Concordant ER-

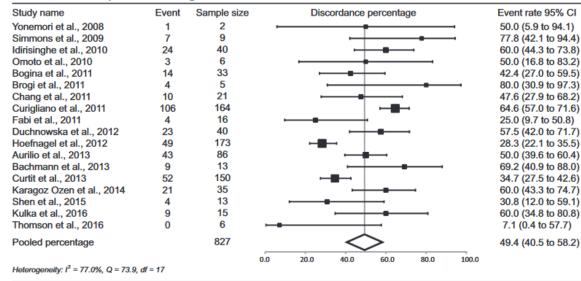
ER conversion from primary to metastasis

ER+ → ER-: 22.5%

ERa conversion: positive to negative

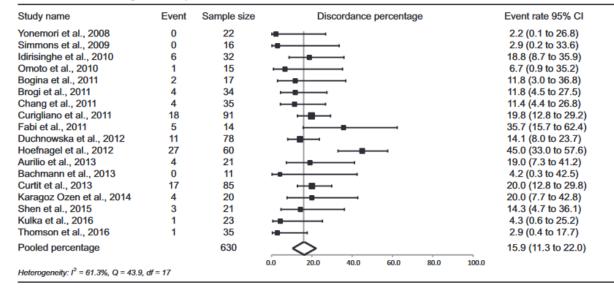
Study name	Event	Sample size	Discordance percentage	Event rate (95% CI)
Yonemori et al., 2008	2	3		66.7 (15.4 to 95.7)
Simmons et al., 2009	3	16		18.8 (6.2 to 44.7)
Idirisinghe et al., 2010	10	49	•	20.4 (11.3 to 33.9)
Omoto et al., 2010	2	9		22.2 (5.6 to 57.9)
Bogina et al., 2011	3	41		7.3 (2.4 to 20.4)
Brogi et al., 2011	4	8		50.0 (20.0 to 80.0)
Chang et al., 2011	8	26		30.8 (16.2 to 50.5)
Curigliano et al., 2011	22	197		11.2 (7.5 to 16.4)
Fabi et al., 2011	1	14		7.1 (1.0 to 37.0)
Botteri et al., 2012	10	78	- -	12.8 (7.0 to 22.2)
Duchnowska et al., 2012	22	51		43.1 (30.4 to 56.9)
Hoefnagel et al., 2012	23	147		15.6 (10.6 to 22.4)
Jensen et al., 2012	7	69		10.1 (4.9 to 19.8)
Aurilio et al., 2013	19	100		19.0 (12.5 to 27.9)
Bachmann et al., 2013	7	11	· · · · · · · · · · · · · · · · · · ·	63.6 (33.9 to 85.7)
Curtit et al., 2013	29	193	- -	15.0 (10.6 to 20.8)
Karagoz Ozen et al., 2014	6	39		15.4 (7.1 to 30.3)
Shen et al., 2015	5	15		33.3 (14.6 to 59.4)
Kulka et al., 2016	16	20		80.0 (57.2 to 92.3)
Thomson et al., 2016	0	15	• B	3.1 (0.2 to 35.0)
Pooled percentage		1101	\diamond	22.5 (16.4 to 30.0)
Heterogeneity: I ² = 78.3%, Q = 87.4	, df = 19		0.0 20.0 40.0 60.0 80.0 100.0	

ER- → ER+: 21.5%


ERa conversion: negative to positive

Study name	Event	Sample size	Discordance percentage	Event rate (95% CI)
Yonemori et al., 2008	2	21		9.5 (2.4 to 31.1)
Simmons et al., 2009	0	9		5.0 (0.3 to 47.5)
Idirisinghe et al., 2010	3	23		13.0 (4.3 to 33.5)
Omoto et al., 2010	2	12		16.7 (4.2 to 47.7)
Bogina et al., 2011	1	9		11.1 (1.5 to 50.0)
Brogi et al., 2011	2	29		6.9 (1.7 to 23.8)
Chang et al., 2011	9	30		30.0 (16.4 to 48.3)
Curigliano et al., 2011	15	58		25.9 (16.2 to 38.6)
Fabi et al., 2011	5	16		31.3 (13.6 to 56.7)
Botteri et al., 2012	5	21		23.8 (10.3 to 46.0)
Duchnowska et al., 2012	13	69		18.8 (11.3 to 29.8)
Hoefnagel et al., 2012	12	59		20.3 (11.9 to 32.5)
Jensen et al., 2012	3	14		21.4 (7.1 to 49.4)
Aurilio et al., 2013	3	7		42.9 (14.4 to 77.0)
Bachmann et al., 2013	0	11		4.2 (0.3 to 42.5)
Curtit et al., 2013	11	42		26.2 (15.1 to 41.4)
Karagoz Ozen et al., 2014	4	17		23.5 (9.1 to 48.6)
Shen et al., 2015	5	20		25.0 (10.8 to 47.8)
Kulka et al., 2016	5	21		23.8 (10.3 to 46.0)
Thomson et al., 2016	3	26		11.5 (3.8 to 30.3)
Pooled percentage		514	\diamond	21.5 (18.1 to 25.5)
			0.0 20.0 40.0 60.0 80.0	100.0
Heterogeneity: I² = 0%, Q = 16.6, d	f = 19			

PgR conversion from primary to metastasis


PgR+ → PgR-: 49.4%

PR conversion: positive to negative

PgR- → PgR+: 15.9%

PR conversion: negative to positive

HER2 conversion from primary to metastasis

HER2+ → HER2-: 21.3%

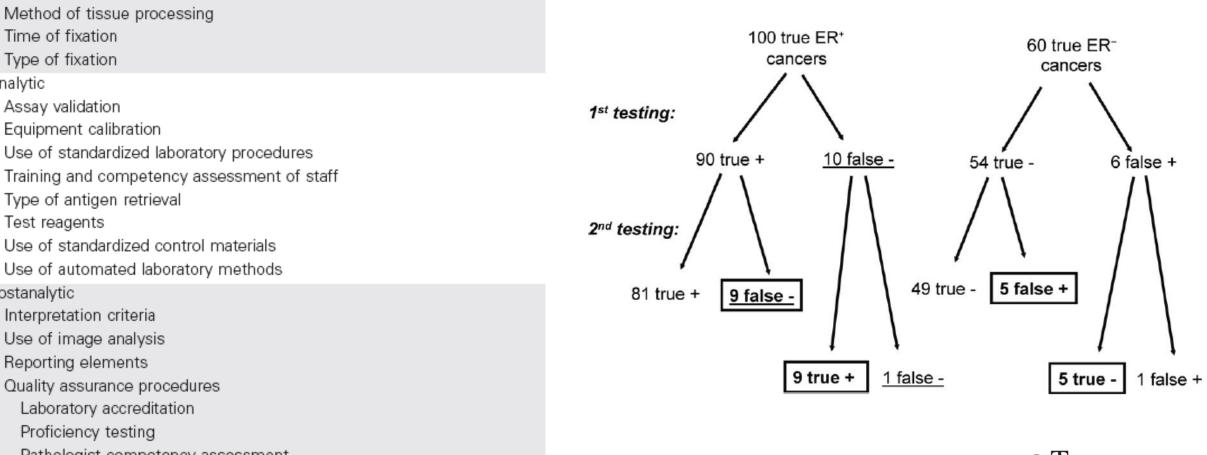
HER2 conversion: positive to negative

P = .				
Study name	Event	Sample size	Discordance percentage	Event rate (95% CI)
Gancberg et al., 2002	0	21		2.3 (0.1 to 27.7)
Vincent-Salomon et al., 2002	2	11		18.2 (4.6 to 50.7)
Regitnig et al., 2004	0	4		10.0 (0.6 to 67.4)
Zidan et al., 2005	1	14		7.1 (1.0 to 37.0)
Fuchs et al., 2006	6	8	· · · · · · · · · · · · · · · · · · ·	75.0 (37.7 to 93.7)
Lorincz et al., 2006	2	4	· · · · · · · · · · · · · · · · · · ·	50.0 (12.3 to 87.7)
Gaedcke et al., 2007	1	8	· • • · · · · · · · · · · · · · · · · ·	12.5 (1.7 to 53.7)
Santinelli et al., 2008	2	9		22.2 (5.6 to 57.9)
Yonemori et al., 2008	2	9		22.2 (5.6 to 57.9)
Cabioglu et al., 2009	4	9	•	44.4 (17.7 to 74.9)
Lower et al., 2009	90	140		64.3 (56.0 to 71.8)
Simmons et al., 2009	0	4		10.0 (0.6 to 67.4)
Idirisinghe et al., 2010	4	14		28.6 (11.1 to 56.1)
Omoto et al., 2010	1	7		14.3 (2.0 to 58.1)
Bogina et al., 2011	0	7		6.3 (0.4 to 53.9)
Brogi et al., 2011	2	20		10.0 (2.5 to 32.4)
Chang et al., 2011	4	15		26.7 (10.4 to 53.3)
Curigliano et al., 2011	17	54		31.5 (20.6 to 44.9)
Fabi et al., 2011	2	7	·	28.6 (7.2 to 67.3)
Botteri et al., 2012	5	17		29.4 (12.8 to 54.2)
Duchnowska et al., 2012	7	57	- -	12.3 (6.0 to 23.6)
Jensen et al., 2012	1	5		20.0 (2.7 to 69.1)
Aurilio et al., 2013	2	8		25.0 (6.3 to 62.3)
Bachmann et al., 2013	1	11		9.1 (1.3 to 43.9)
Curtit et al., 2013	6	40		15.0 (6.9 to 29.6)
Nakamura et al., 2013	3	25		12.0 (3.9 to 31.3)
Shen et al., 2015	1	17		5.9 (0.8 to 32.0)
Kulka et al., 2016	2	5		40.0 (10.0 to 80.0)
Thomson et al., 2016	1	13		7.7 (1.1 to 39.1)
Pooled percentage		563	\diamond	21.3 (14.3 to 30.5)
			0.0 20.0 40.0 60.0 80.0 10	0.0
Heterogeneity: I ² = 74.4%, Q = 109.2,	df = 28			

HER2- \rightarrow HER2+: 9.5%

HER2 conversion: negative to positive

6 0 3 7 4 0 2 5 1 2 37 2 1 3 0 0 5	64 33 24 40 19 15 26 15 26 15 242 21 58 14 41 20 41			-		1 1 2 1 1 6 8 8 1 1 2 1 2 1	.4 (4.3 to .5 (0.1 to 2.5 (4.1 t 5.9 (7.8 t 0.0 (3.8 t .5 (0.2 to .5 (0.2 to .3 (3.4 t 9.2 (8.2 t .7 (0.9 to .0 (2.0 to .5 (3.1 to .7 (0.2 to) .7 (0.2 to .7 (0.2 to).7 (0.2 to)	19.6) o 32.4) o 29.8) o 23.8) 29.8) o 40.5) o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
3 7 4 0 2 5 5 1 2 37 2 1 3 0 0	24 44 40 19 15 26 15 25 242 21 58 14 41 20	<u>╶</u> ┥┥┥╷┥┥┥┙╵╵╵		-		1 1 2 1 1 6 8 1 9 1 2 1	2.5 (4.1 t 5.9 (7.8 t 0.0 (3.8 t .5 (0.2 to 3.3 (3.4 t 9.2 (8.2 t .7 (0.9 to 0.0 (2.0 to 0.0 (2.0 to 5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 t .2 (0.1 to	o 32.4) o 29.8) o 23.8) 29.8) o 40.5) o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
7 4 0 2 5 1 2 37 2 1 3 0 0	44 40 19 15 26 15 25 242 21 58 14 41 20			-		1 2 1 1 6 8 1 9 1 2 1	5.9 (7.8 t 0.0 (3.8 t 5.5 (0.2 to 3.3 (3.4 t 9.2 (8.2 t 7.7 (0.9 to 0.0 (2.0 to 5.3 (11.3 1.5 (2.4 to .7 (0.2 to 1.4 (7.1 t .2 (0.1 to	o 29.8) o 23.8) 29.8) o 40.5) o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
2 5 1 2 37 2 1 3 0 0	40 19 15 26 15 25 242 21 58 14 41 20			a		1 2 1 6 8 1 9 1 2 1	0.0 (3.8 t 5 (0.2 to 3.3 (3.4 t 9.2 (8.2 t 7 (0.9 to 0 (2.0 to 5.3 (11.3 5 (2.4 to .7 (0.2 to 1.4 (7.1 t .2 (0.1 to	o 23.8) 29.8) o 40.5) o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
2 5 1 2 37 2 1 3 0 0	19 15 26 15 25 242 21 58 14 41 20		-			2 1 6 8 1 9 1 2 1	.5 (0.2 to 3.3 (3.4 t 9.2 (8.2 t) .7 (0.9 to .0 (2.0 to 5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 t) .2 (0.1 to	29.8) o 40.5) o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
2 5 1 2 37 2 1 3 0 0	15 26 15 25 242 21 58 14 41 20					1 6 8 1 9 1 2 1	3.3 (3.4 t 9.2 (8.2 t) .7 (0.9 to 0.0 (2.0 to 5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 t) .2 (0.1 to	o 40.5) o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
5 1 2 37 2 1 3 0 0	26 15 25 242 21 58 14 41 20			-		1 6 8 1 9 1 2 1	9.2 (8.2 t) .7 (0.9 to .0 (2.0 to 5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 t) .2 (0.1 to	o 38.7) 35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
1 2 37 2 1 3 0 0	15 25 242 21 58 14 41 20			-		6 8 1 9 1 2	.7 (0.9 to .0 (2.0 to 5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 t .2 (0.1 to	35.2) 26.9) to 20.4) 31.1) 11.2) o 49.4)	
37 2 1 3 0 0	25 242 21 58 14 41 20		 	4		8 1 9 1 2	.0 (2.0 to 5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 to .2 (0.1 to	26.9) to 20.4) 31.1) 11.2) o 49.4)	
37 2 1 3 0 0	242 21 58 14 41 20		 	4		1 9 1 2 1	5.3 (11.3 .5 (2.4 to .7 (0.2 to 1.4 (7.1 t .2 (0.1 to	to 20.4) 31.1) 11.2) o 49.4)	
2 1 3 0 0	21 58 14 41 20			-		9 1 2 1	.5 (2.4 to .7 (0.2 to 1.4 (7.1 to .2 (0.1 to	31.1) 11.2) o 49.4)	
1 3 0 0	21 58 14 41 20		_	-		9 1 2 1	.5 (2.4 to .7 (0.2 to 1.4 (7.1 to .2 (0.1 to	31.1) 11.2) o 49.4)	
0	14 41 20		•	-		1 2 1	.7 (0.2 to 1.4 (7.1 t .2 (0.1 to	11.2) o 49.4)	
0	41 20	-	•	-		2	1.4 (7.1 t .2 (0.1 to	o 49.4)	
ō	20					1	.2 (0.1 to		
		-							
5	41					2	.4 (0.1 to		
			-			1	2.2 (5.2 t	o 26.1)	
7	118	- -				5	.9 (2.9 to	11.9)	
1	23	-	-			4	.3 (0.6 to	25.2)	
3	43					7	.0 (2.3 to	19.5)	
10	62		-			1	6.1 (8.9 t	o 27.5)	
4	75	-				5	.3 (2.0 to	13.4)	
4	78	-							
3		_		-					
			-						
5									
õ		<u> </u>							
5			-						
5	28								
	1486	\lambda				9	.5 (7.4 to	12.1)	
	10 4 32 5 5 5 5	3 43 10 62 4 75 4 78 3 13 2 178 5 64 0 19 5 43 5 28 1486	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


Estrogen and HER-2 Receptor Discordance Between Primary Breast

Cancer and Metastasis

LAJOS PUSZTAI,^a GIUSEPPE VIALE,^b CATHERINE M. KELLY,^a CLIFFORD A. HUDIS^c

ncologist

Breast Cancer

Time of fixation

Sources of HER2 testing variations

Type of fixation

Time to fixation

Analytic

Preanalytic

Assay validation

Equipment calibration

Use of standardized laboratory procedures

Training and competency assessment of staff

Type of antigen retrieval

Test reagents

Use of standardized control materials

Use of automated laboratory methods

Postanalytic

Interpretation criteria

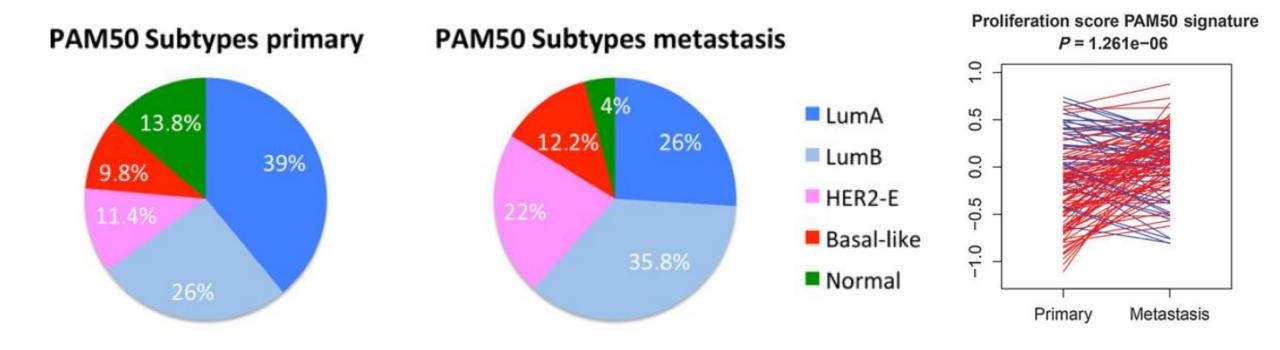
Use of image analysis

Reporting elements

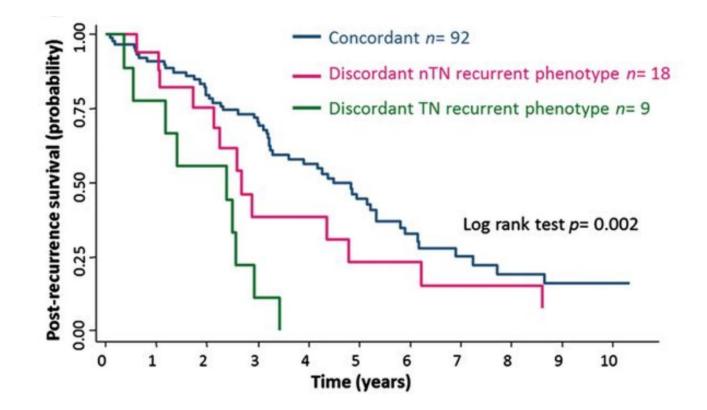
Quality assurance procedures

Laboratory accreditation

Proficiency testing


Pathologist competency assessment

Wolff AC et al, J Clin Oncol 25:118-145, 2007


Genomic alterations associated with discordant HR expression from primary to metastasis

- Metastasis samples
 - HR+→TN vs concordant HR+: ↑TP53 mut, ↑CDKNB2 and RB1 del
- Primary tumor samples
 - HR+→TN vs concordant HR+: ↑TP53 mut,↓PIK3CA mut, ↑alterations in DNA repair pathways, ↑TMB

PAM50 subtype in primary and matched metastatic BC samples

Tumor phenotype discordance

Tumor phenotype discordance during progression

- Biopsy of recurrence is suggested whenever possible, mostly when the clinical course of disease is not coherent with the known primary tumor phenotype
 - It can allow to diagnose second non-BC primary tumors
 - It may offer the opportunity for a more personalized treatment
 - It may allow the possibility to enroll patients in clinical trials

Determinants of last-line treatment in mBC: summary

- Retrospective cohort of 410 mBC died because of disease progression
- LumA 14%, LumB 53%, LumB HER2+ 8%, HER2+ 10%, TN 15%
- Median n° of lines = 3; last-line CT 68%, last-line ET 32.4%
- Median LLS = 100 days; 15% died <30d, 48% died <90d

Limiting active anticancer treatment in the end of life period: ASCO Top-Five list in Oncology

"In reality, only 2 major reasons exist for administering chemotherapy to most patients with metastatic cancer: to help them live longer and/or to help them live better." Blanke CD & Fromme EK, JAMA Oncol 2015

Top-Five list in Oncology (ASCO)

1- Don't use cancer-directed therapy for solid tumor patients with the following characteristics: PS 3-4, no benefit from prior evidence-based interventions, not eligible for a clinical trial, and no strong evidence supporting the clinical value of further anti-cancer treatment.

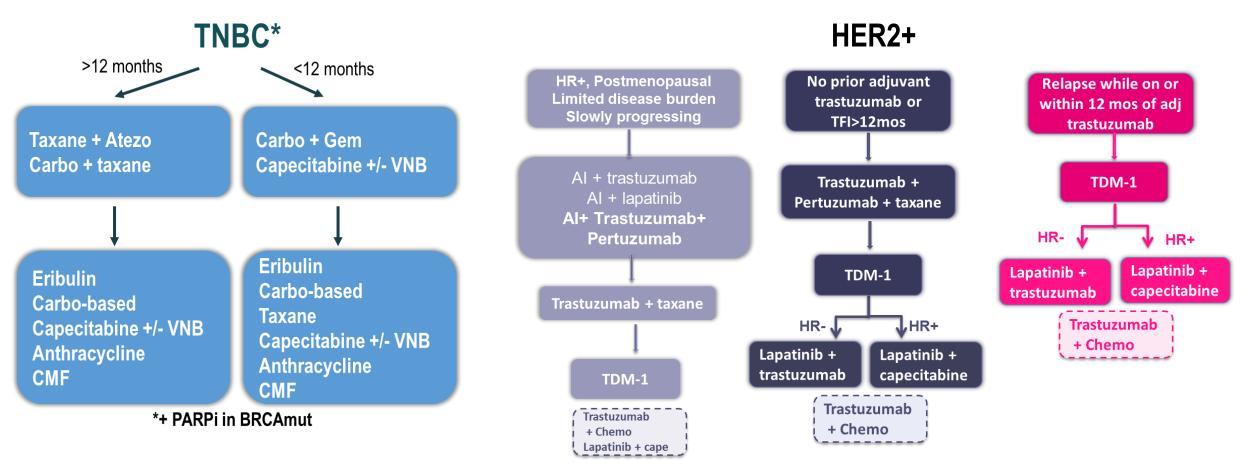
Why is it so difficult?

• How are decisions made?

 Decision-making was shared and ongoing, including stopping, starting and trying different treatments. Oncologists often experienced 'professional role dissonance' between their self-perception as 'treaters', and talking about end of life care.

• Why are decisions made?

Clinical factors: disease progression, worsening functional status, treatment side-effects. Non-clinical factors: physicians' personal experience, values, emotions. Some patients continued treatment to maintain 'hope', often reflecting limited understanding of palliative goals.


• When are decisions made?

• Limited evidence reveals patients' decisions based upon quality of life benefits. Clinicians found timing withdrawal particularly challenging.

• Who makes the decisions?

• Decisions were based within physician-patient interaction.

Do you always know this will be the last? The evolving scenario of mBC treatment

Do you always know this will be the last? The evolving scenario of mBC treatment

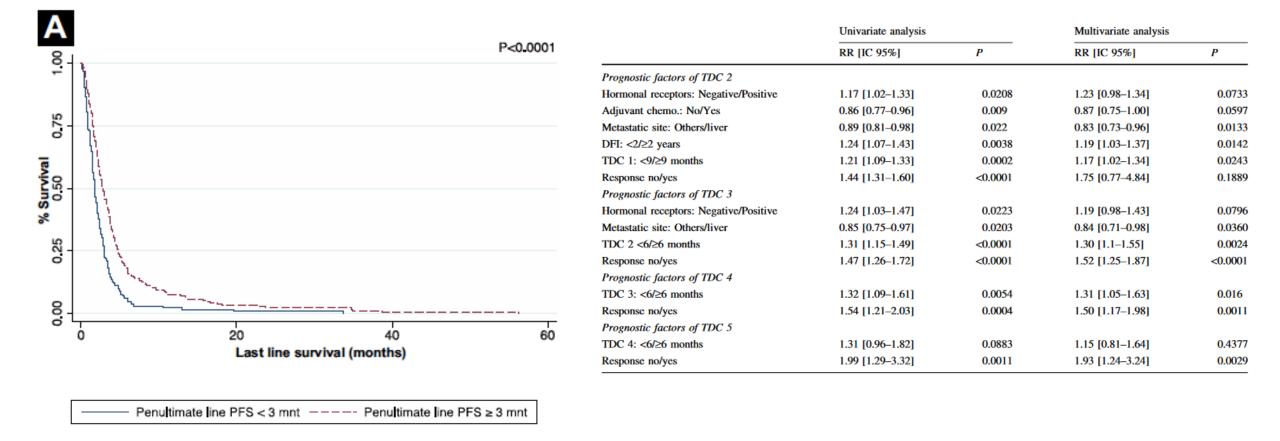
Endocrine Primary endocrine Secondary endocrine sensitivity resistance resistance De novo stage IV **Progression after 2 yrs from start Progression within 2 yrs** and < 1y from end of adjuvant ET **Progression > 1y after adjuvant ET** from start of adjuvant ET Fulv + CDK4/6i Fulv NSAI + CDK4/6i Fulv + CDK4/6i Exe + Eve (bone only) Exe-Eve* Exe-Eve* Fulv +CDK4/6i* Exe + Eve* Exe + Eve ---------------**Chemotherapy**

* Sequences not supported by data from clinical trials

PIK3CA (and ESR1) mutational status on tumor tissue/ctDNA likely to have a role in treatment sequencing

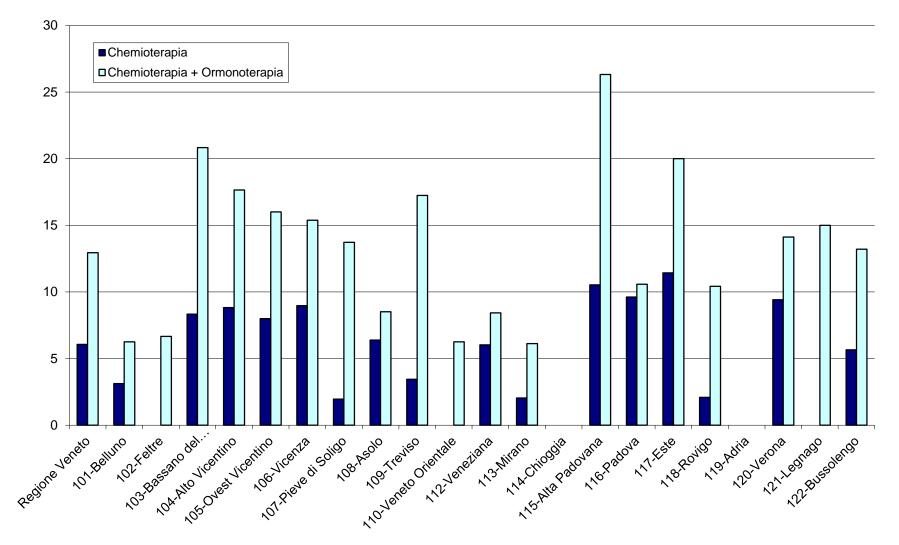
Do you always know this will be the last?

Variable	Total Population	Lightly Pretreated ^a	Heavily Pretreated®	P Value ^b
Primary tumor histotype (n = 404)				.333
Ductal	75.99 (307)	76.23 (170)	75.69 (137)	
Lobular	17.57 (71)	18.83 (42)	16.02 (29)	
NOS	6.44 (26)	4.93 (11)	8.29 (15)	
ER status (n = 378)				.002
Negative	24.07 (91)	30.24 (62)	16.76 (29)	
Positive	75.93 (287)	69.76 (143)	83.24 (144)	
PR status (n = 379)				<.0001
Negative	39.31 (149)	48.31 (100)	28.49 (49)	
Positive	60.69 (230)	51.69 (107)	71.51 (123)	
HR status (n = 410)				<.0001
Negative	29.02 (119)	36.12 (82)	20.22 (37)	
Positive	70.98 (291)	63.88 (145)	79.78 (146)	
Ki-67 (n = 308)				.483
<14%	27.92 (86)	26.32 (45)	29.93 (41)	
≥14%	72.08 (222)	73.68 (126)	70.07 (96)	
HER2 status (n = 371)				.469
Negative	82.21 (305)	81.37 (166)	84.24 (139)	
Positive	17.25 (64)	18.63 (38)	15.76 (26)	
Luminal type (n = 330)				.0379
Luminal A-like	13.64 (45)	11.41 (21)	16.44 (24)	
Luminal B-like, HER2	53.03 (175)	49.46 (91)	57.53 (84)	
Luminal B-like, HER2+	7.88 (26)	7.07 (13)	8.90 (13)	
HER2 ⁺ , nonluminal	10.30 (34)	12.50 (23)	7.53 (11)	
Triple negative	15.15 (50)	19.57 (36)	9.59 (1.4)	
Asthenia (n = 326)				.0564
No	47.55 (155)	52.69 (88)	42.14 (67)	
Yes	52.45 (171)	47.31 (79)	57.86 (92)	
Dyspnea (n = 341)				.6828
No	71.26 (243)	70.29 (123)	72.29 (120)	
Yes	28.74 (98)	29.71 (52)	27.71 (46)	
Anemia (n = 281)				.1254
No	57.30 (161)	61.64 (90)	52.59 (71)	
Yes	42.70 (120)	38.36 (56)	47.41 (64)	
Jaundice (n = 325)				.9913
No	96.31 (313)	96.32 (157)	96.30 (156)	
Yes	3.69 (12)	3.68 (6)	3.70 (6)	


Variable	Total Population	Lightly Pretreated [®]	Heavily Pretreated [®]	P Value ^b
Ascites (n = 322)				.7438
No	91.30 (294)	90.80 (148)	91.82 (146)	
Yes	8.70 (28)	9.20 (15)	8.18 (13)	
Pain (n = 352)				.8366
No	38.92 (137)	39.44 (71)	38.37 (66)	
Yes	61.08 (215)	60.56 (109)	61.63 (106)	
Anorexia, weight loss, cachexia (n = 337)				.4024
No	73.29 (247)	75.29 (128)	71.26 (119)	
Yes	26.71 (90)	24.71 (42)	28.74 (48)	
Liver function impairment (n = 278)				.6914
No	86.33 (240)	85.51 (118)	85.51 (122)	
Yes	13.67 (38)	14.49 (20)	12.86 (18)	
Edema (n = 319)				.2448
No	88.40 (282)	86.34 (139)	90.51 (143)	
Yes	11.60 (37)	13.66 (22)	9.49 (15)	
Pleural effusion (n = 317)				.1612
No	84.86 (269)	82.10 (133)	87.74 (136)	
Yes	15.14 (48)	17.90 (29)	12.26 (19)	
Neurologic symptoms (n = 330)				<.0001
No	74.24 (245)	84.24 (139)	64.24 (106)	
Yes	25.76 (85)	15.76 (26)	35.76 (59)	
ONS symptoms (n = 158)			1	.352
No	85.44 (135)	88.16 (67)	82.93 (68)	
Yes	14.56 (23)	11.84 (9)	17.07 (14)	
Pathologic fractures (n = 300)				.2625
No	95.33 (286)	93.96 (140)	96.69 (146)	
Yes	4.67 (14)	6.04 (9)	3.31 (5)	
ECOG PS at last line (n = 404)				.6321
0-1	65.35 (264)	66.37 (148)	64.09 (116)	
2-3	34.65 (140)	33.63 (75)	35.91 (65)	
Age at last line (n = 410)				.0029
<70 y	58.05 (238)	51.54 (117)	66.12 (121)	
≥70 y	41.95 (172)	48.46 (110)	33.88 (62)	

Determinants of last-line treatment in mBC: summary

	PS>1	Jaundice	Impaired liver function	Anorexia/ cachexia	Non-BC specialist
All					
<30d	Х	Х			
<90d	Х				
Lightly pretreated					
<30d	Х				
<90d			Х		
Heavily pretreated					
<30d	Х		Х		Х
<90d	Х			Х	


Cinausero M, Clin Breast Cancer 2017

Benefit from prior Tx line influences outcome with subsequent Tx

Misurazione degli Indicatori PDTA Rete Oncologica Veneta

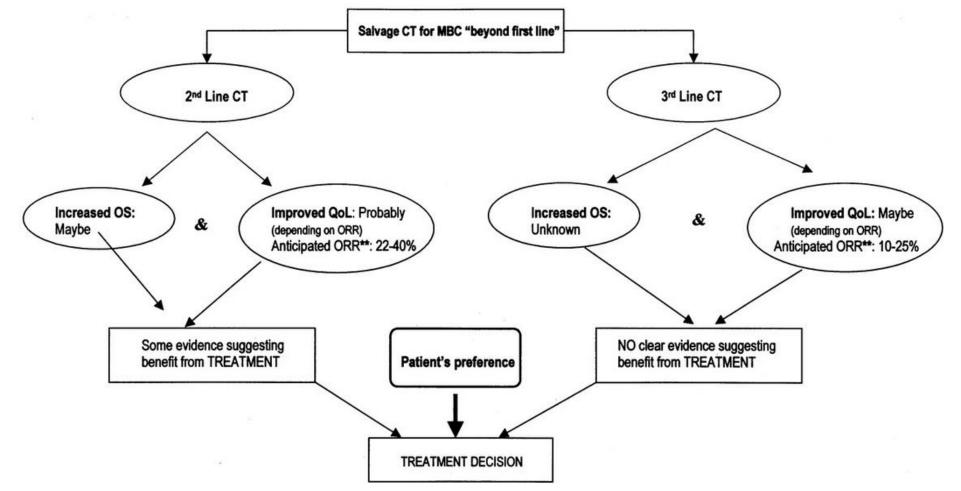
Proporzione di pazienti che hanno ricevuto trattamento oncologico attivo 30 giorni prima del decesso Benchmark < 10% (60/989)

Dati Rete Oncologica Veneta, anno 2016

QUESITO GRADE n.6: Cure palliative precoci

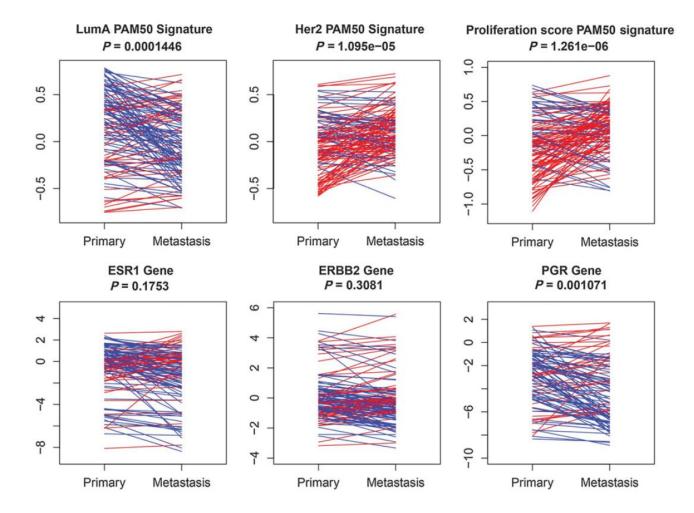
QUESITO CLINICO n. 20 (RIFERIRSI AL quesito GRADE n. 6)

Nei pazienti con carcinoma avanzato/metastatico, è raccomandabile l'integrazione delle cure palliative precoci con il trattamento oncologico rispetto al "solo practice model"?

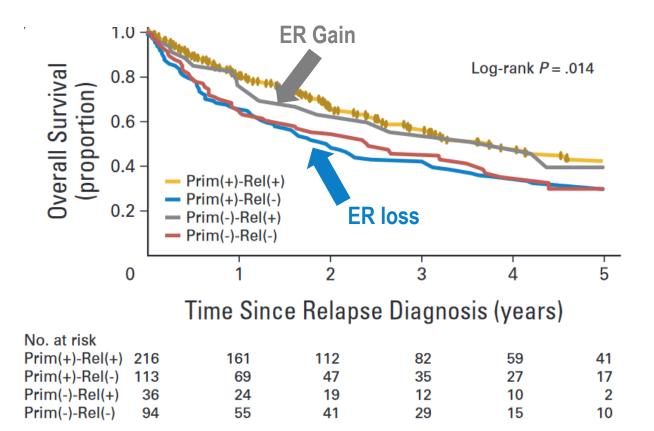

Qualità Globale delle evidenze GRADE	Raccomandazione clinica	Forza della raccomandazione clinica
Molto bassa	Nei pazienti con carcinoma avanzato/metastatico, è raccomandabile l'integrazione delle cure palliative precoci con il trattamento oncologico rispetto al "solo practice	Positiva forte (ove disponibile un team di cure pallaitive)
Wono bassa	model"?	Positiva debole (ove non disponibile un team di cure palliative)

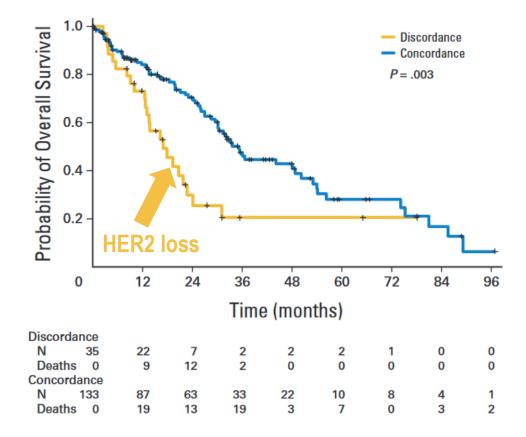
- Quesito elaborato dal WG AIOM «Cure Palliative Precoci»
- Inserito in capitolo dedicato (capitolo 13)

Raccomandazioni prodotte secondo metodologia GRADE


Fare riferimento all' Allegato 1 per il razionale, la sintesi delle evidenze e i dettagli alla raccomandazione

The scenario of mBC treatment (CT) in 2002


Cardoso F, Ann Oncol 2002


Gene expression in primary and matched metastatic BC samples

Cejalvo JM et al, Clin Cancer Res 2017

Discordance in receptor expression from primary to MBC

Lindstrom LS, J Clin Oncol 2012