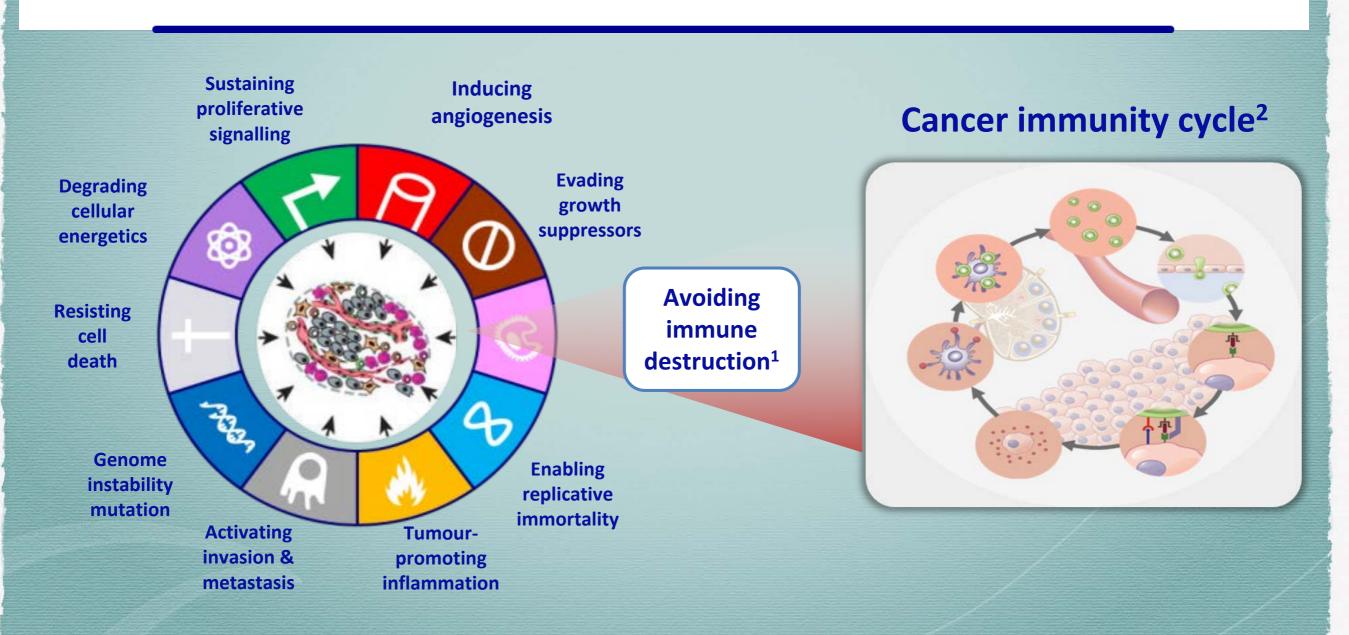
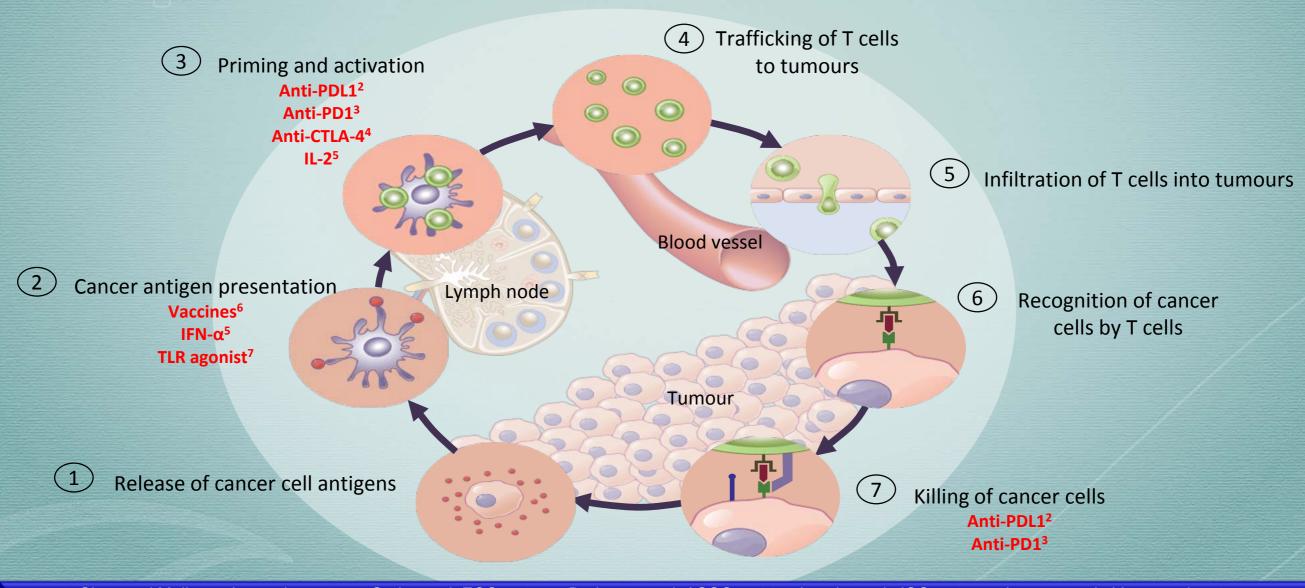


NUOVE SFIDE CLINICHE NELL'ERA DELL'IMMUNOTERAPIA DEL CARCINOMA DEL POLMONE

13-14 MARZO 2017


Desenzano del Garda HUTEL ACOLIANNA DEL GARDA Presentazione linee terapeutiche successive, quando introdurre l'immunoterapia?

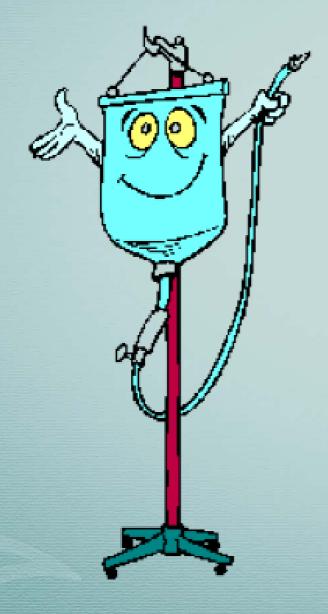
Dr.ssa Elisa Roca Dirigente Medico - Referente Oncologia Toracica Oncologia Medica - Spedali Civili di Brescia


Summary

- Immunoterapy
- Clinical studies
- Patients selection
- Future
- Conclusions

Avoiding immune destruction is a hallmark of cancer

Immunotherapy in NSCLC can target several steps in the cancer immunity

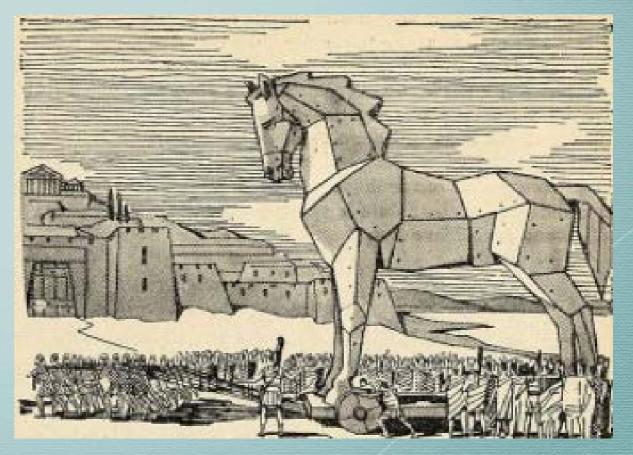

1. Chen and Mellman. Immunity 2013; 2. Soria, et al. ECC 2013; 3. Brahmer, et al. ASCO 2014 4. Lynch, et al. JCO 2012; 5. Jansen, et al. J Immunother 1992; 6.Vansteenkiste, et al. JCO 2013 7. Manegold, et al. JCO 2008

Regulating the T cell immune response

Adapted from Mellman I, et al. Nature. 2011:480;481–489; Pardoll DM. Nat Rev Cancer. 2012;12:252–264.

Standard Chemotherapy

Target Therapy



Standard Chemotherapy

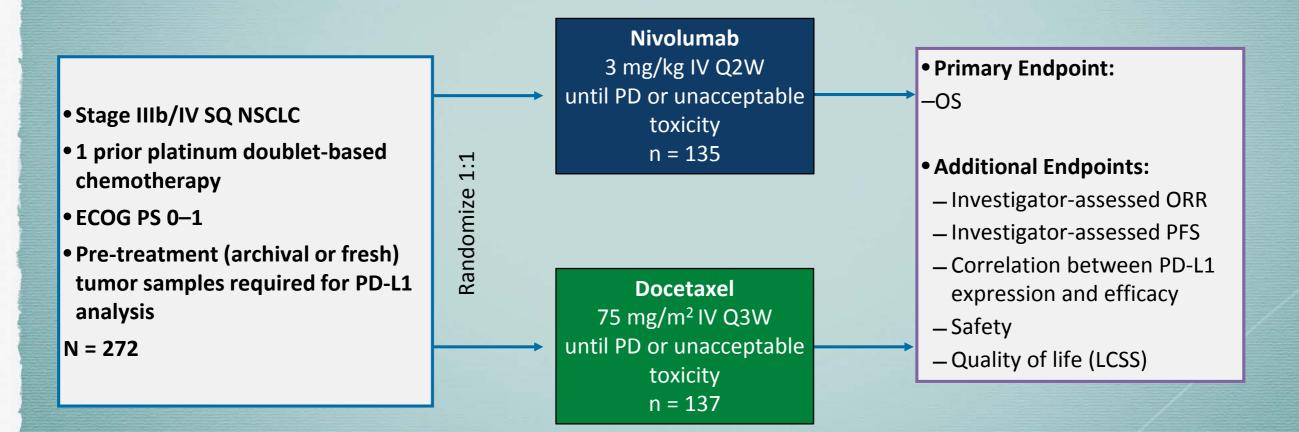
Immunotherapy

THERAPY: Using The Body To Fight Cancer

Therapeutic	Lead company	Antibody type	
Anti-PDL1			
Atezolizumab	Roche	Engineered IgG1 (no ADCC)	
Durvalumab	AstraZeneca	Modified IgG1 (no ADCC)	
Avelumab	Merck Serono	IgG1 (humanized)	
BMS-936559	Bristol-Myers Squibb	IgG4 (humanised)	
Anti-PD1			
Nivolumab	Bristol-Myers Squibb	lgG4	
Pembrolizumab	MercK Sharp Dome	IgG4 (humanised)	
AMP-224	GlaxoSmithKline	PD-L2 IgG1 Fc fusion	
Pidilizumab (CT-011)	CureTech	IgG1 (humanised)	

CheckMate 017

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer

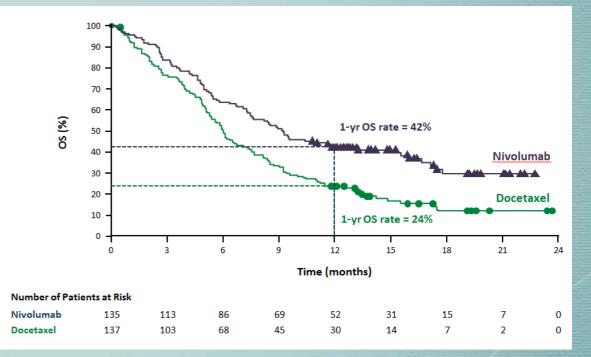
Julie Brahmer, M.D., Karen L. Reckamp, M.D., Paul Baas, M.D., Lucio Crinò, M.D., Wilfried E.E. Eberhardt, M.D., Elena Poddubskaya, M.D., Scott Antonia, M.D., Ph.D., Adam Pluzanski, M.D., Ph.D., Everett E. Vokes, M.D., Esther Holgado, M.D., Ph.D., David Waterhouse, M.D., Neal Ready, M.D., Justin Gainor, M.D., Osvaldo Arén Frontera, M.D., Libor Havel, M.D., Martin Steins, M.D., Marina C. Garassino, M.D., Joachim G. Aerts, M.D., Manuel Domine, M.D., Luis Paz-Ares, M.D., Martin Reck, M.D., Christine Baudelet, Ph.D., Christopher T. Harbison, Ph.D., Brian Lestini, M.D., Ph.D., and David R. Spigel, M.D.

N Engl J Med 2015;373:123-35. DOI: 10.1056/NEJMoa1504627

CheckMate 017

Spigel et al, ASCO 2015; Brahmer et al, NEJM 2015

CheckMate 017


PFS

Number of Patients at Risk							
Nivolumab	135	68	48	33	21	15	6
Docetaxel	137	62	26	9	6	2	1

PFS per investigator

	Nivolumab n = 135	Docetaxel n = 137	
mPFS, mo	3.5	2.8	
(95% CI)	(2.1, 4.9)	(2.1, 3.5)	
HR = 0.62 (95% CI: 0.47, 0.8	(1); P = 0.0004	

OS

	Nivolumab n = 135	Docetaxel n = 137
n OS mo, 95% Cl)	9.2 (7.3, 13.3)	6.0 (5.1, 7.3)
t events	86	113
HR = 0.59	9 (95% CI: 0.44, 0.79),	<i>P</i> = 0.00025

Spigel et al, ASCO 2015; Brahmer et al, NEJM 2015

2

0


0

0

CheckMate 017

CONCLUSIONS

Among patients with advanced, previously treated squamous-cell NSCLC, overall survival, response rate, and progression-free survival were significantly better with nivolumab than with docetaxel, regardless of PD-L1 expression level. (Funded by Bristol-Myers Squibb; CheckMate 017 ClinicalTrials.gov number, NCT01642004.)

CheckMate 057

The NEW ENGLAND JOURNAL of MEDICINE

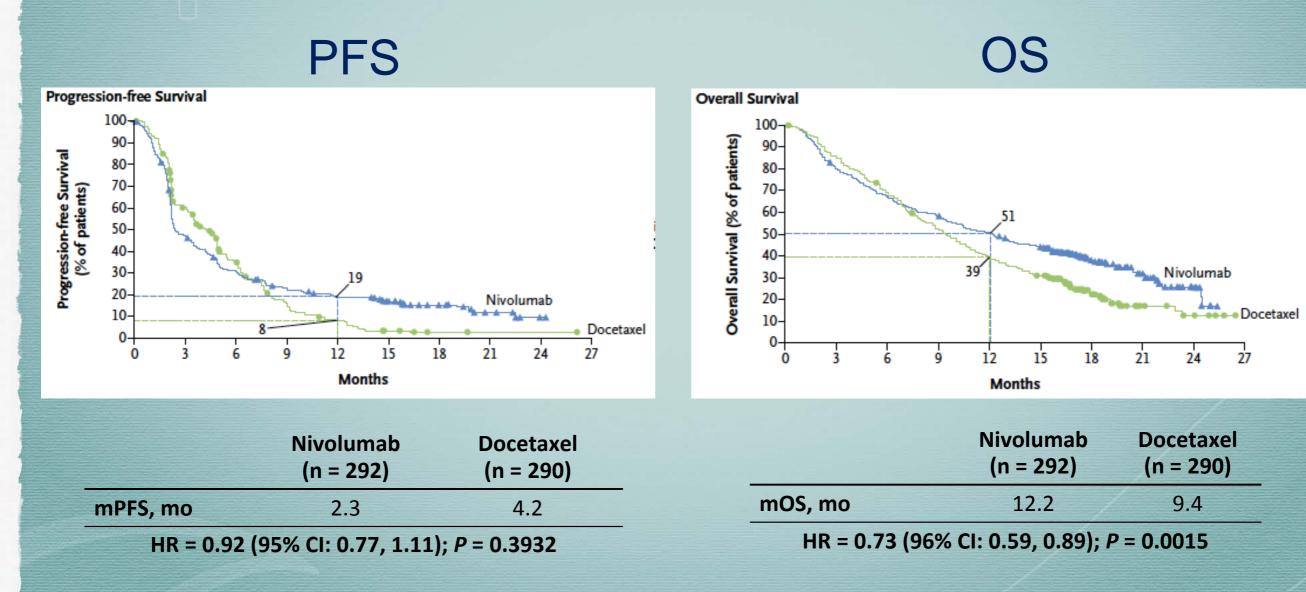
ORIGINAL ARTICLE

Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer

H. Borghaei, L. Paz-Ares, L. Horn, D.R. Spigel, M. Steins, N.E. Ready, L.Q. Chow,
E.E. Vokes, E. Felip, E. Holgado, F. Barlesi, M. Kohlhäufl, O. Arrieta, M.A. Burgio,
J. Fayette, H. Lena, E. Poddubskaya, D.E. Gerber, S.N. Gettinger, C.M. Rudin,
N. Rizvi, L. Crinò, G.R. Blumenschein, Jr., S.J. Antonia, C. Dorange,
C.T. Harbison, F. Graf Finckenstein, and J.R. Brahmer

N Engl J Med 2015;373:1627-39. DOI: 10.1056/ NEJMoa1507643

CheckMate 057


Nivolumab • Stage IIIB/IV non-SQ NSCLC • Primary Endpoint 3 mg/kg IV Q2W Pre-treatment (archival or recent) -OSuntil PD or tumor samples required for PD-L1 1:1 unacceptable toxicity • ECOG PS 0-1 Additional Endpoints Randomize n = 292 - ORR^b Failed 1 prior platinum doublet - PFS^b Prior maintenance therapy allowed^a Docetaxel - Safety $75 \text{ mg/m}^2 \text{IV Q3W}$ Prior TKI therapy allowed for known - Efficacy by tumor PD-L1 ALK translocation or EGFR mutation until PD or expression unacceptable toxicity – Quality of life (LCSS) N = 582n = 290

> Patients stratified by prior maintenance therapy and line of therapy (second- vs third-line)

^a Maintenance therapy included pemetrexed, bevacizumab, or erlotinib (not considered a separate line of therapy); ^b Per RECIST v1.1 criteria as determined by the investigator.

Spigel et al, ASCO 2015; Brahmer et al, NEJM 2015

CheckMate 057

Spigel et al, ASCO 2015; Brahmer et al, NEJM 2015

CheckMate 057

CONCLUSIONS

Among patients with advanced nonsquamous NSCLC that had progressed during or after platinum-based chemotherapy, overall survival was longer with nivolumab than with docetaxel. (Funded by Bristol-Myers Squibb; CheckMate 057 ClinicalTrials.gov number, NCT01673867.)

N Engl J Med 2015;373:1627-39. DOI: 10.1056/NEJMoa1507643

Clinical Studies Keynote 010

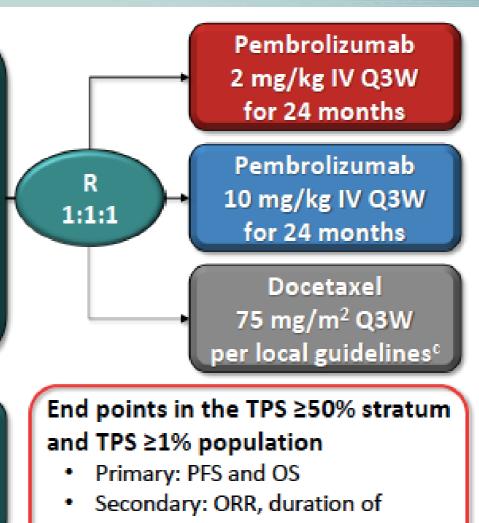
Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial

> Roy S Herbst, Paul Baas, Dong-Wan Kim, Enriqueta Felip, José L Pérez-Gracia, Ji-Youn Han, Julian Molina, Joo-Hang Kim, Catherine Dubos Arvis, Myunq-Ju Ahn, Margarita Majem, Mary J Fidler, Gilberto de Castro Jr, Marcelo Garrido, Gregory M Lubiniecki, Yue Shentu, Ellie Im, Marisa Dolled-Filhart, Edward B Garon

Lancet 2016; 387: 1540-50

Published Online December 19, 2015 http://dx.doi.org/10.1016/ 50140-6736(15)01281-7

See Comment page 1488


Keynote 010

Patients

- Advanced NSCLC
 Confirmed PD after ≥1 line of chemotherapy^a
 - No active brain metastases
- ECOG PS 0-1
- PD-L1 TPS ≥1%
- No serious autoimmune disease
- No ILD or pneumonitis requiring systemic steroids

Stratification factors:

- ECOG PS (0 vs 1)
- Region (East Asia vs non-East Asia)
 PD-L1 status^b (TPS ≥50% vs 1%-49%)

response, safety

ClinicalTrials.gov, NCT01905657.

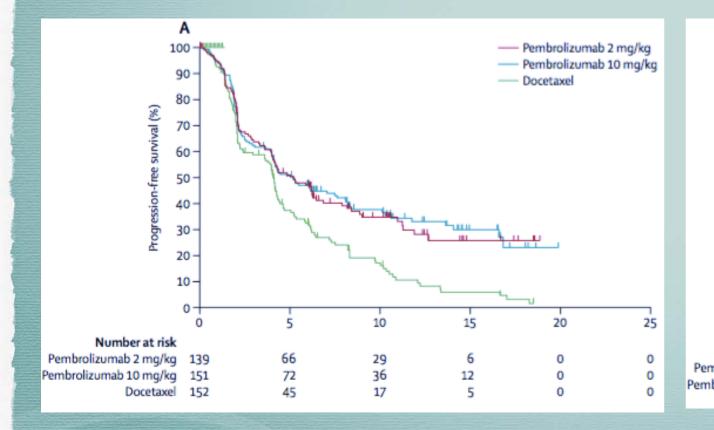
FSMI

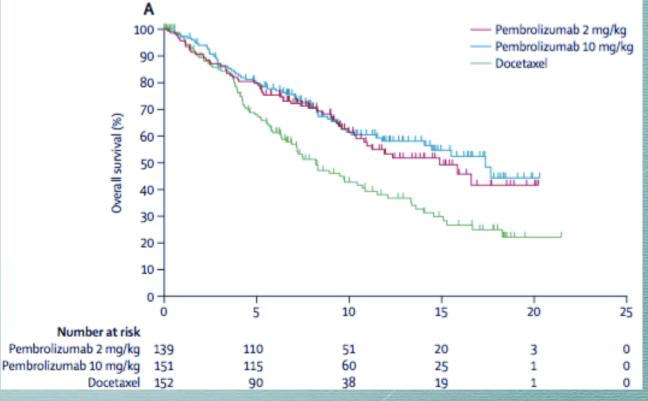
18-21 DECEMBER

SINGAPORE

*Prior therapy must have included ≥2 cycles of platinum-doublet chemotherapy. An appropriate tyrosine kinase inhibitor was required for patients whose tumors had an EGFR sensitizing mutation or an ALK translocation. ▶Added after 441 patients enrolled based on results from KEYNOTE-001 (Garon EB et al. N Engl J Med. 2015;372:2018-28).

Patients received the maximum number of cycles permitted by the local regulatory authority.


Keynote 010


PFS

PD-L1 score 50% or greater

PD-L1 score 50% or greater

OS

Herbst R et al, Lancet 2015

Clinical Studies Keynote 010

Interpretation Pembrolizumab prolongs overall survival and has a favourable benefit-to-risk profile in patients with previously treated, PD-L1-positive, advanced non-small-cell lung cancer. These data establish pembrolizumab as a new treatment option for this population and validate the use of PD-L1 selection.

Funding Merck & Co.

Lancet 2016; 387: 1540-50

Published Online December 19, 2015 http://dx.doi.org/10.1016/ S0140-6736(15)01281-7

See Comment page 1488

Clinical Studies POPLAR

Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial

Louis Fehrenbacher, Alexander Spira, Marcus Ballinger, Marcin Kowanetz, Johan Vansteenkiste, Julien Mazieres, Keunchil Park, David Smith, Angel Artal-Cortes, Conrad Lewanski, Fadi Braiteh, Daniel Waterkamp, Pei He, Wei Zou, Daniel S Chen, Jing Yi, Alan Sandler, Achim Rittmeyer, for the POPLAR Study Group*

Lancet 2016; 387: 1837–46

Published Online March 9, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)00587-0

POPLAR

R

1:1

Metastatic or locally advanced NSCLC (2L/3L) Disease progression on a prior platinum therapy N = 287

Stratification Factors

- PD-L1 IC expression (0 vs 1 vs 2 vs 3)^a
- Histology (squamous vs non-squamous)
- Prior chemotherapy regimens (1 vs 2)

Atezolizumab 1200 mg IV q3w until loss of clinical benefit

Docetaxel 75 mg/m² IV q3w until disease progression

Primary study objective:

Estimate OS in PD-L1 selected and ITT populations

Secondary study objectives:

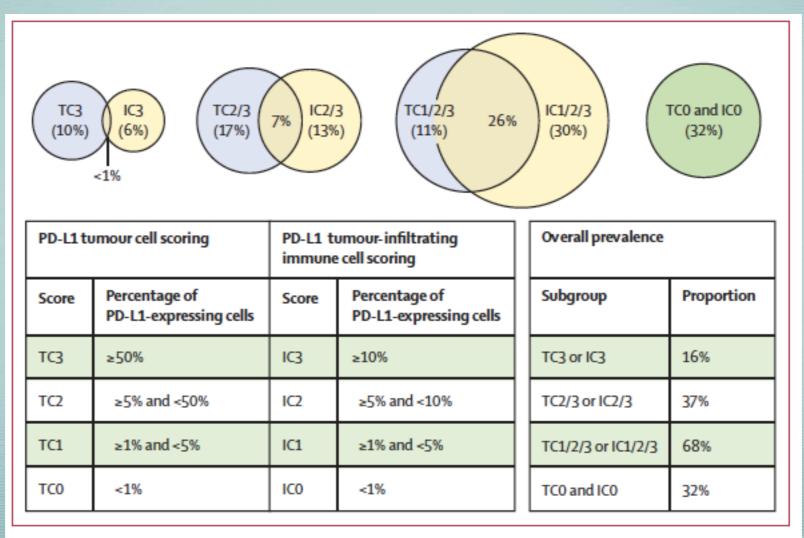
- Evaluate PFS, ORR and DOR in PD-L1 selected and ITT populations
- Evaluate safety

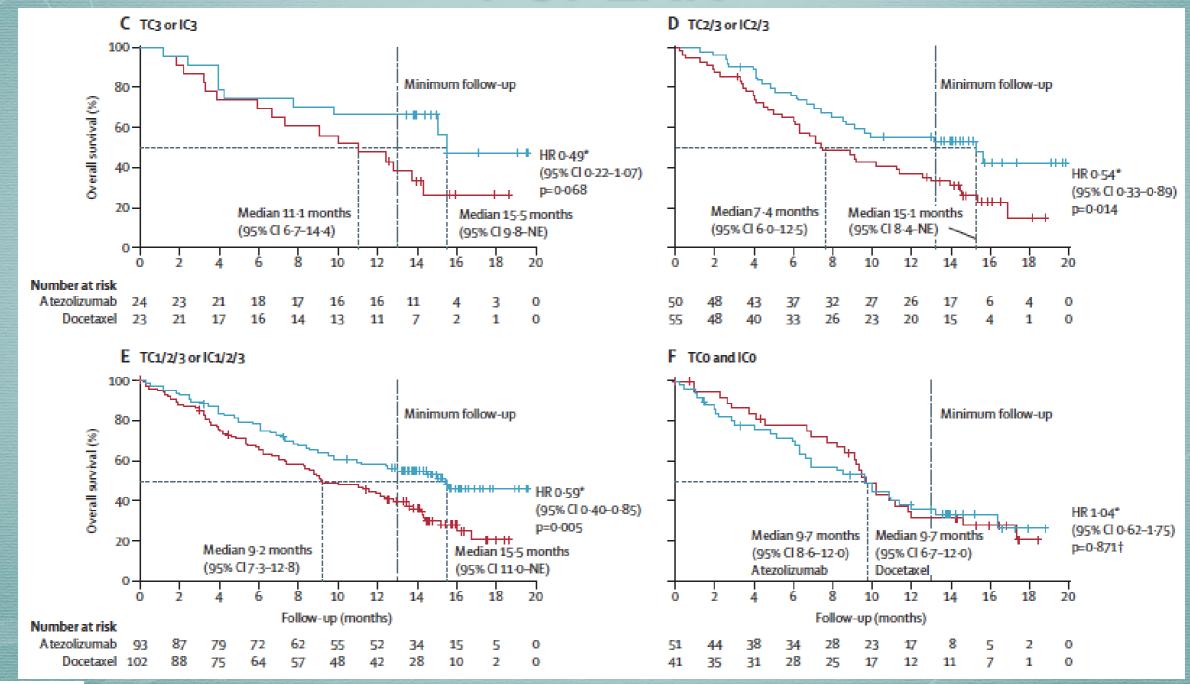
• ^aArchival or fresh tissue required for pre-dose testing.

Interim analysis is based on 153 events with a minimum follow-up 10 months

Spira, ASCO 2015

POPLAR




Figure 1: Programmed death ligand 1 (PD-L1) scoring criteria, prevalence, and overlap between PD-L1 expression on tumour cells and tumour-infiltrating immune cells

Percentages in Venn diagrams represent the prevalence of PD-L1 expression in non-overlapping subgroups.

Lancet 2016; 387: 1837–46

Published Online March 9, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)00587-0

Clinical Studies POPLAR

Lancet 2016; 387: 1837-46

Published Online March 9, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)00587-0

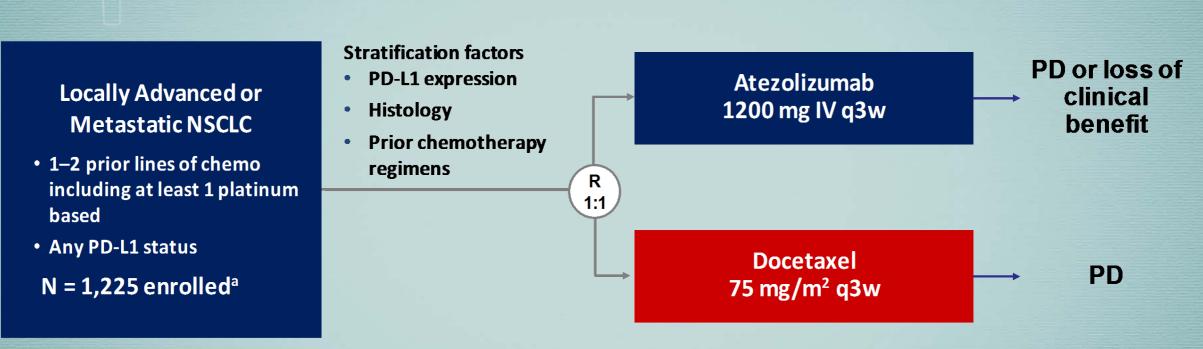
Clinical Studies POPLAR

Interpretation Atezolizumab significantly improved survival compared with docetaxel in patients with previously treated NSCLC. Improvement correlated with PD-L1 immunohistochemistry expression on tumour cells and tumour-infiltrating immune cells, suggesting that PD-L1 expression is predictive for atezolizumab benefit. Atezolizumab was well tolerated, with a safety profile distinct from chemotherapy.

Funding F Hoffmann-La Roche/Genentech Inc.

Lancet 2016; 387: 1837-46

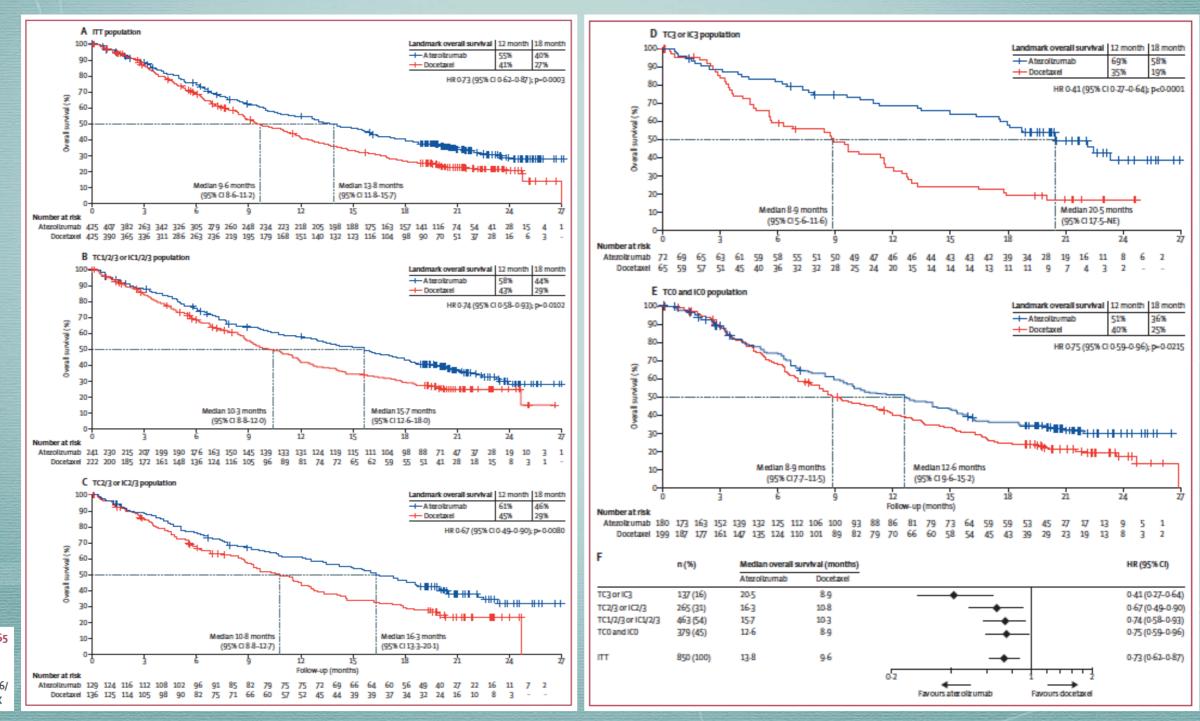
Published Online March 9, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)00587-0


Spira, ASCO 2015

Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial

Achim Rittmeyer, Fabrice Barlesi, Daniel Waterkamp, Keunchil Park, Fortunato Ciardiello, Joachim von Pawel, Shirish M Gadgeel, Toyoaki Hida, Dariusz M Kowalski, Manuel Cobo Dols, Diego L Cortinovis, Joseph Leach, Jonathan Polikoff, Carlos Barrios, Fairooz Kabbinavar, Osvaldo Arén Frontera, Filippo De Marinis, Hande Turna, Jong-Seok Lee, Marcus Ballinger, Marcin Kowanetz, Pei He, Daniel S Chen, Alan Sandler, David R Gandara, for the OAK Study Group*

Lancet 2017; 389: 255-65 Published Online December 12, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)32517-X


Primary Endpoints (first 850 enrolled patients):

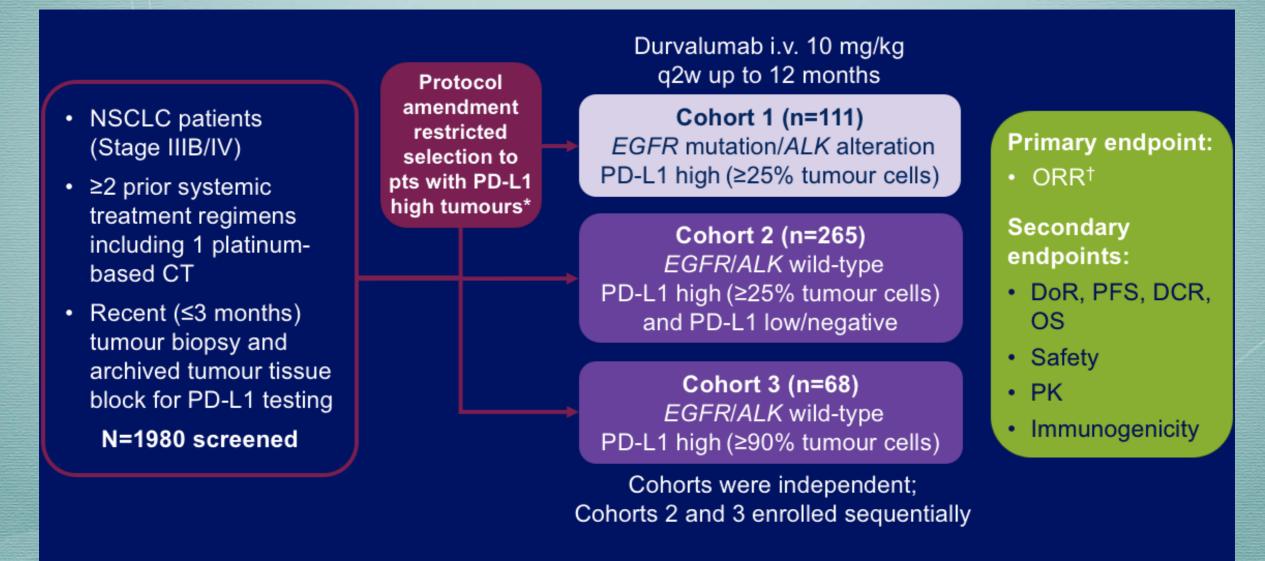
- OS in the ITT population
- OS in patients with PD-L1 expression on ≥ 1% TC or IC

Secondary Endpoints: ORR, PFS, DoR, Safety

^aA prespecified analysis of the first 850 patients provided sufficient power to test the ∞-primary endpoints of OS in the ITT and TC1/2/3 or IC1/2/3 subgroup (≥ 1% PD-L1 expression). TC, tumor cells; IC, tumor-infiltrating immune cells.

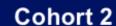
OAK

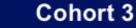
Lancet 2017; 389: 255–65

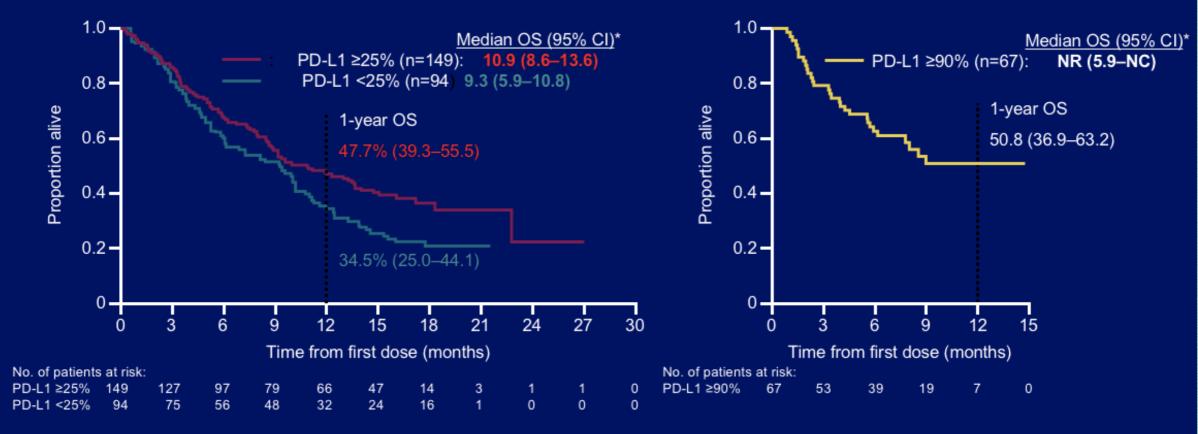

Published Online December 12, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)32517-X

Interpretation To our knowledge, OAK is the first randomised phase 3 study to report results of a PD-L1-targeted therapy, with atezolizumab treatment resulting in a clinically relevant improvement of overall survival versus docetaxel in previously treated non-small-cell lung cancer, regardless of PD-L1 expression or histology, with a favourable safety profile.

Funding F. Hoffmann-La Roche Ltd, Genentech, Inc.


Lancet 2017; 389: 255-65 Published Online December 12, 2016 http://dx.doi.org/10.1016/ S0140-6736(16)32517-X


Clinical Studies ATLANTIC



*PD-L1 expression levels assessed by immunohistochemistry (VENTANA PD-L1 [SP263] Assay); ⁺ORR by independent central review (RECIST v1.1) CT, chemotherapy; DCR, disease control rate; DoR, duration of response

Clinical Studies ATLANTIC

*Median follow up for OS was 9.4 months (PD-L1 ≥25%); 9.3 months (PD-L1 <25%); and 7.0 months (PD-L1 ≥90%) NC, not calculated; NR, not reached

Clinical Studies ATLANTIC

- Durvalumab was active and led to durable responses in a heavily pretreated metastatic NSCLC population
 - Higher PD-L1 expression appeared to be associated with higher response rate
 - 1-year OS was 48% in patients with PD-L1 ≥25% and 51% in those with PD-L1 ≥90%
- Most AEs were low grade and manageable
- Results are consistent with other anti-PD-1/PD-L1 therapies in metastatic NSCLC

ATLANTIC

A Global Study to Assess the Effects of MEDI4736 in Patients With Lo...tic Non Small Cell Lung Cancer - Full Text View - ClinicalTrials.gov

06/03/17, 16:27

ClinicalTrials.gov

A service of the U.S. National Institutes of Health Try our beta test site

A Global Study to Assess the Effects of MEDI4736 in Patients With Locally Advanced or Metastatic Non Small Cell Lung Cancer (ATLANTIC)

This study is ongoing, but not recruiting participants. Sponsor: AstraZeneca Information provided by (Responsible Party): AstraZeneca		participants.	ClinicalTrials.gov Identifier: NCT02087423 First received: March 4, 2014 Last updated: February 11, 2017 Last verified: February 2017 History of Changes		
		1			
		F			
		y): L			
Full Text View	Tabular View	o Study Results Post	ed Disclaimer	How to Read a Study Record	

Purpose

A study to assess the Effects of MEDI4736 in Patients With Locally Advanced or Metastatic Non Small Cell Lung Cancer in terms of efficacy, safety and tolerability

Condition	Intervention	Phase	
Non-Small Cell Lung Cancer	Drug: MEDI4736	Phase 2	

- Study Type: Interventional
- Study Design: Intervention Model: Single Group Assignment Masking: No masking Primary Purpose: Treatment
- Official Title: A Phase II, Non-comparative, Open Label, Multi-centre, International Study of MEDI4736, in Patients With Locally Advanced or Metastatic Non Small Cell Lung Cancer (Stage IIIB-IV) Who Have Received at Least 2 Prior Systemic Treatment Regimens Including 1 Platinum-based Chemotherapy Regimen

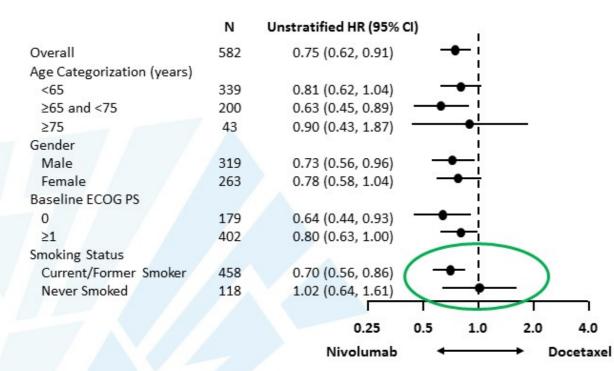
Clinical Factors:

- Gender
- Age / Smoking status
- Histology

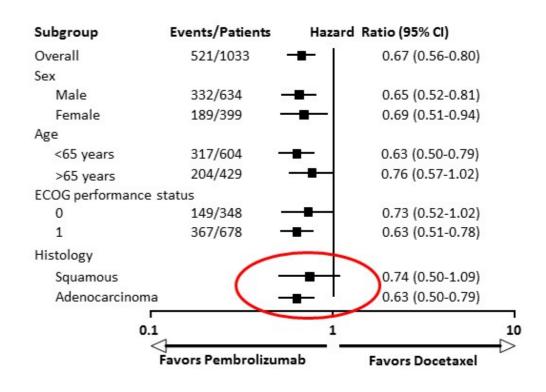
Genetic Factors:

- Specific mutations
- Mutational load

Immunological Factors:

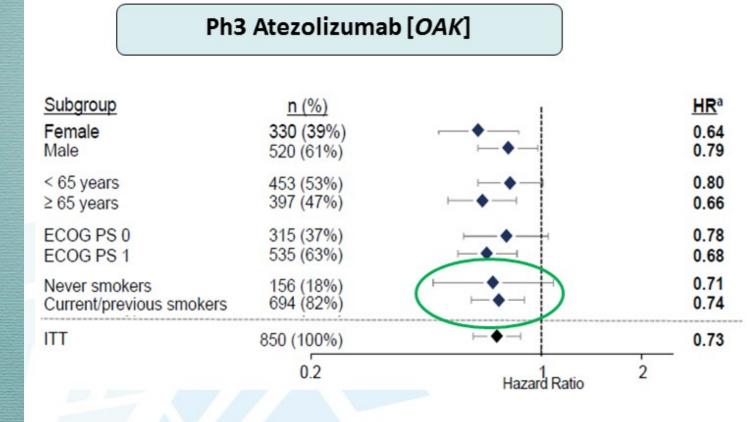

- PD-L1
- Tumor microenvironment


Clinical Factors:


Lung cancer immunotherapy

> effect of age, gender, PS, smoking, histology: anti PD-1 datasets

Ph3 Nivolumab (NSQ) [ChM 057]



Borghaei et al, N Engl J Med 373:1627-1639, 2015 Herbst et al, Lancet 387:1540-150, 2016

Clinical Factors:

Lung cancer immunotherapy

> effect of age, gender, PS, smoking, histology: anti PD-L1 datasets

RECIST response (ORR)	
Histology	
Squamous	31/146 (21.2%)
Non-squamous	19/139 (13.7%)
Tobacco use	
Former/current smoker	47/240 (19.6%)
Never smoker	3/45 (6.7%)

Ph1/2 Durvalumab [study 1108]

Respiratory Oncology Unit Univ. Hospital Leuven Leuven Lung Cancer Group http://www.LLCG.be

Barlesi et al, ESMO 2016 Antonia et al, ESMO 2016

Clinical Factors:

Lung cancer immunotherapy > effect of age, gender, PS, smoking, histology

Subgroup Female n (%) 330 (39%) HR ^a Years 330 (39%) 0.64 Male 520 (61%) 0.79 < 65 years 453 (53%) 0.80 ≥ 65 years 397 (47%) 0.66 ECOG PS 0 315 (37%) 0.78 ECOG PS 1 535 (63%) 0.78 Never smokers 156 (18%) 0.71 Former/current smoker 47/240 (19.6%) ITT Former nd age: no influence > PS: all available data are in PS 0-1 (activity in PS 2 to be explored)		Ph3 Atezolizuma	b [<i>OAK</i>]		Ph1/2 Durvaluma	b [<i>study 1108</i>]				
Current/ → Gender and age: no influence → PS: all available data are in PS 0-1 (activity in PS 2 to be explored)	Female Male < 65 years ≥ 65 years ECOG PS 0	330 (39%) 520 (61%) 453 (53%) 397 (47%) 315 (37%)		0.64 0.79 0.80 0.66 0.78	Histology Squamous Non-squamous					
Smoking history in general associated with better response & more outcome be	Never smokers 156 (18%) 0.71 Former/current smoker 47/240 (19.6%) Current/ > Gender and age: no influence > PS: all available data are in PS 0-1 (activity in PS 2 to be explored)									

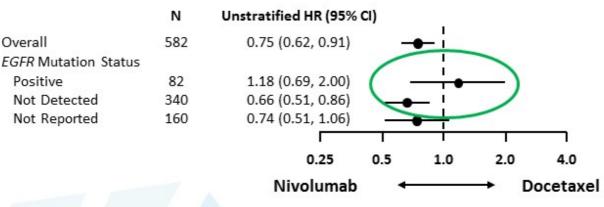
Clinical Factors:

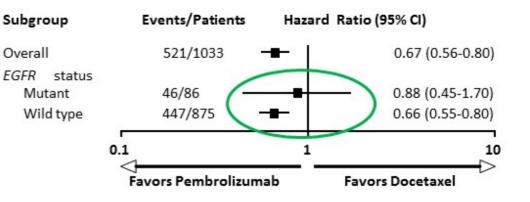
- Gender
- Age / Smoking status
- Histology

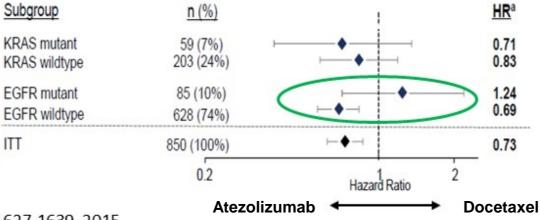
Genetic Factors:

- Specific mutations
- Mutational load
- Immunological Factors:
 - PD-L1
 - Tumor microenvironment

Genetic Factors:

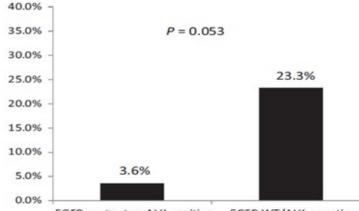

Lung cancer immunotherapy > specific mutations


Overall


Positive

Not Detected

Not Reported

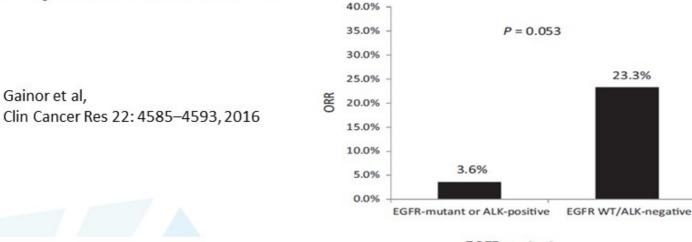

Borghaei et al, N Engl J Med 373:1627-1639, 2015 Herbst et al, Lancet 387:1540-150, 2016 Barlesi et al, ESMO 2016

Genetic Factors:

Lung cancer immunotherapy > specific mutations

NR

Gainor et al, Clin Cancer Res 22: 4585–4593, 2016



EGFR-mutant or ALK-positive EGFR WT/ALK-negative

		EGFR-mutant	ALK-rearranged			
	Pre-TKI	Post-TKI		Pre-Criz	Post-Criz	
	(N = 62)	(N = 63)	Pa	(N = 19)	(N = 12)	Pa
PD-L1 positive						
PD-L1 ⁺ (≥50%)	7 (11%)	9 (14%)	0.727	5 (26%)	2 (17%)	1.000
PD-L1 ⁺ (≥5%)	10 (16%)	18 (29%)	0.119	9 (47%)	3 (25%)	0.500
CD8 ⁺ TILs (IHC) ^b						
0	17 (35%)	18 (42%)	0.847	2 (15%)	4 (44%)	
1+	29 (60%)	20 (47%)		8 (62%)	5 (56%)	
2+	2 (4.2%)	5 (12%)		3 (23%)	0 (0%)	
3+	0 (0%)	0 (0%)		0 (0%)	0 (0%)	
Concurrent PD-L1 expression & CD8 ⁺ TILs (IHC)						
PD-L1 ⁺ (≥50%) & high CD8 ⁺ TILs (grade 2-3)	1/48 (2.1%)	1/43 (2.3%)	1.000	0/13 (0%)	0/9 (0%)	•
PD-L1 ⁺ (≥5%) & high CD8 ⁺ TILs (grade 2-3)	1/48 (2.1%)	5/43 (11.6%)	0.219	0/13 (0%)	0/9 (0%)	

Genetic Factors:

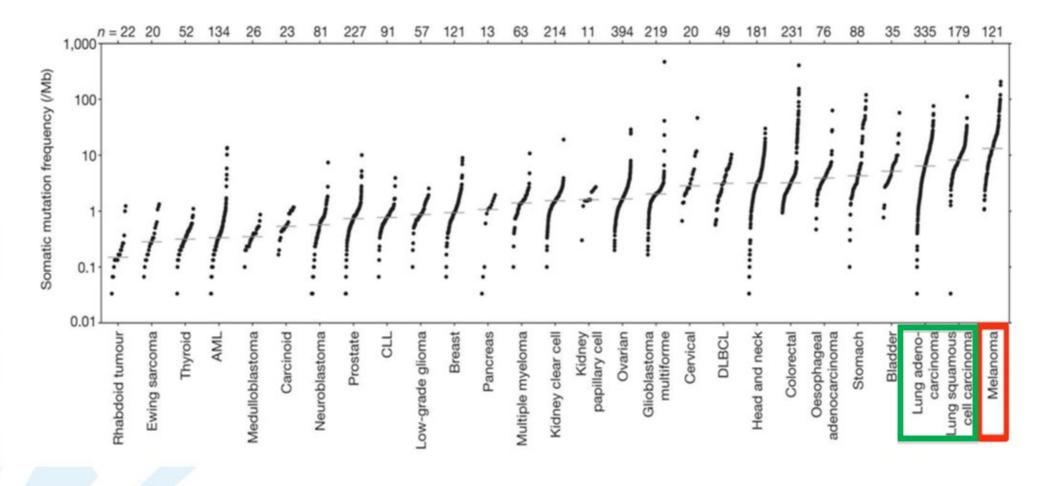
Lung cancer immunotherapy > specific mutations

EGFR-mutant			ALK-rearranged		
Pre-TKI	Post-TKI		Pre-Criz	Post-Criz	
(N = 62)	(N = 63)	Pa	(N = 19)	(N = 12)	Pa
7 (11%)	9 (14%)	0.727	5 (26%)	2 (17%)	1.000
10 (16%)	18 (29%)	0.119	9 (47%)	3 (25%)	0.500
	(N = 62) 7 (11%)	Pre-TKI Post-TKI (N = 62) (N = 63) 7 (11%) 9 (14%)	Pre-TKI Post-TKI $(N = 62)$ $(N = 63)$ P^a 7 (11%) 9 (14%) 0.727	Pre-TKI (N = 62)Post-TKI (N = 63)Pre-Criz (N = 19)7 (11%)9 (14%)0.7275 (26%)	Pre-TKI (N = 62)Post-TKI (N = 63)Pre-Criz PaPost-Criz (N = 19)Post-Criz (N = 12)7 (11%)9 (14%)0.7275 (26%)2 (17%)

(0
-	1.
	+

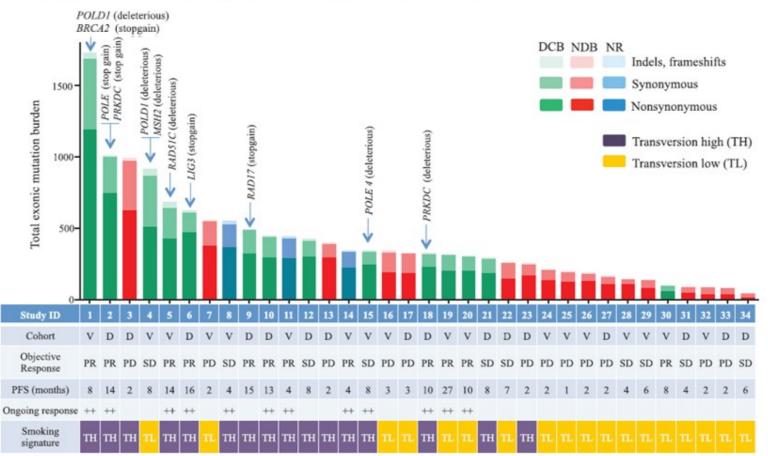
2+

3+


EGFR mutated / ALK translocated tumors:

lower response rate and less outcome benefit

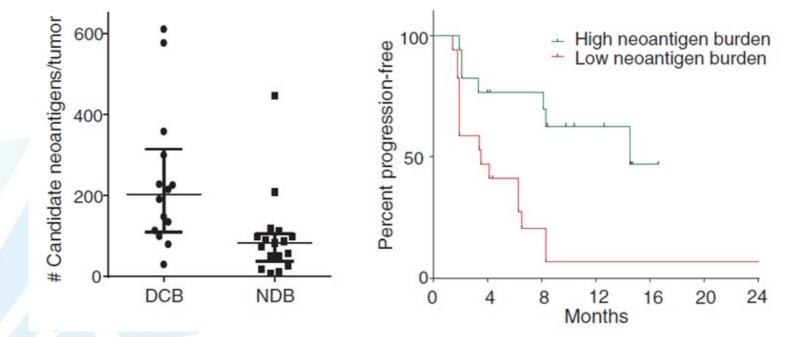
Concurren						
PD-L1 ⁺ (≥50%) & high CD8 ⁺ TILs (grade 2-3)	1/48 (2.1%)	1/43 (2.3%)	1.000	0/13 (0%)	0/9 (0%)	
PD-L1 ⁺ (>5%) & high CD8 ⁺ TILs (grade 2-3)	1/48 (2.1%)	5/43 (11.6%)	0.219	0/13 (0%)	0/9 (0%)	


Genetic Factors:

Lung cancer immunotherapy > mutational load

Genetic Factors:

Lung cancer immunotherapy > mutational load and response to anti-PD-1



Rizvi et al, Science 348:124-128, 2015

Johan Vansteenkiste, WCLC. 2016

Genetic Factors:

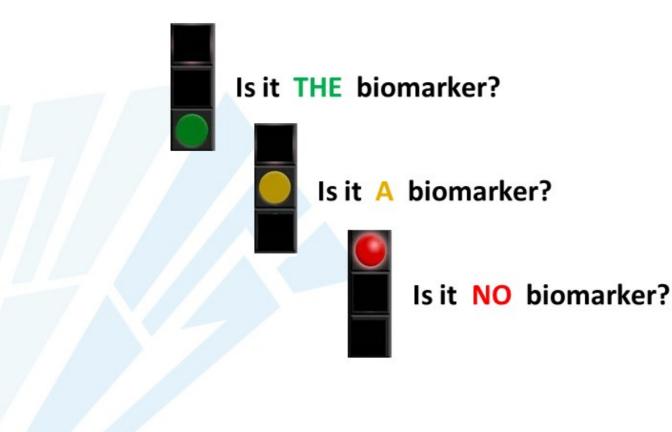
Lung cancer immunotherapy > mutational load and response to anti-PD-1

Clinical Factors:

- Gender
- Age / Smoking status
- Histology

Genetic Factors:

- Specific mutations
- Mutational load


Immunological Factors:

- PD-L1
- Tumor microenvironment

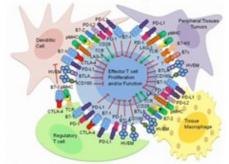
Immunological Factors:

Lung cancer immunotherapy > defining expectations with anti PD-1/PD-L1 therapy

PD-L1 immunohistochemistry

Immunological Factors:

Lung cancer immunotherapy

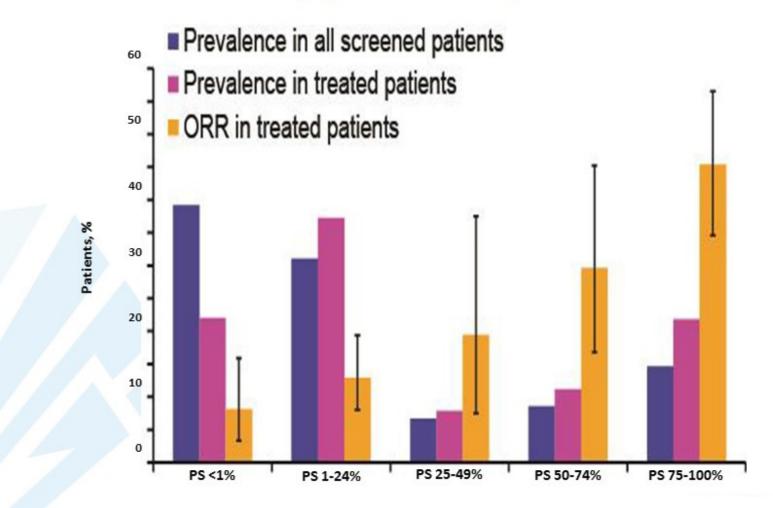

> defining expectations with anti PD-1/PD-L1 therapy

- EGFRmut ≈ EGFR-TKI
- Related to tumor only
- "Simple" mechanism

- Yes/No phenomenon
- Stable over time

- PD-L1 IHC ≈ anti-PD-1/PD-L1
- Related to tumor & environment
- Complex mechanism

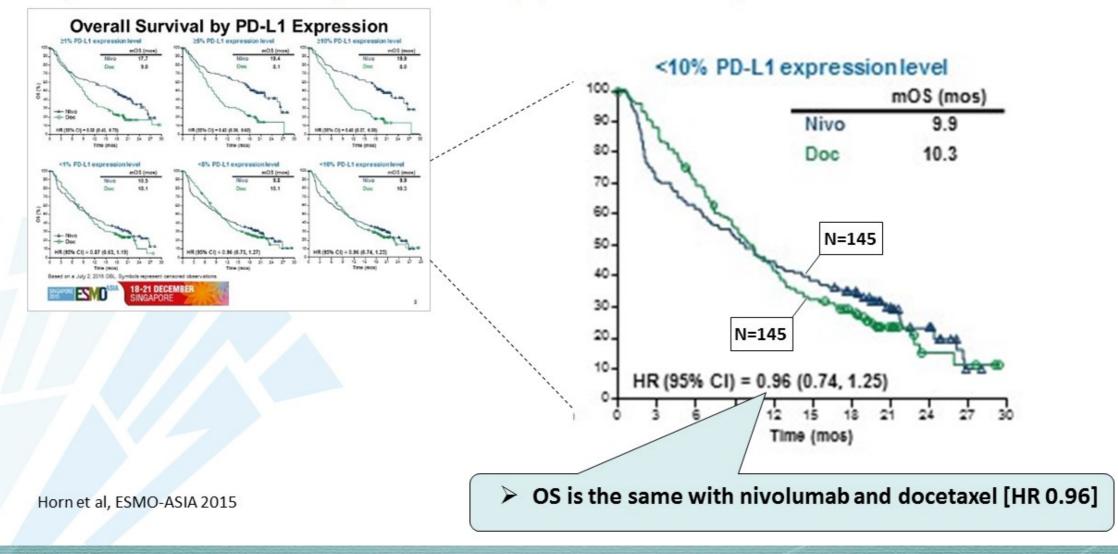
- Continuous phenomenon
- Inducible


THE biomarker

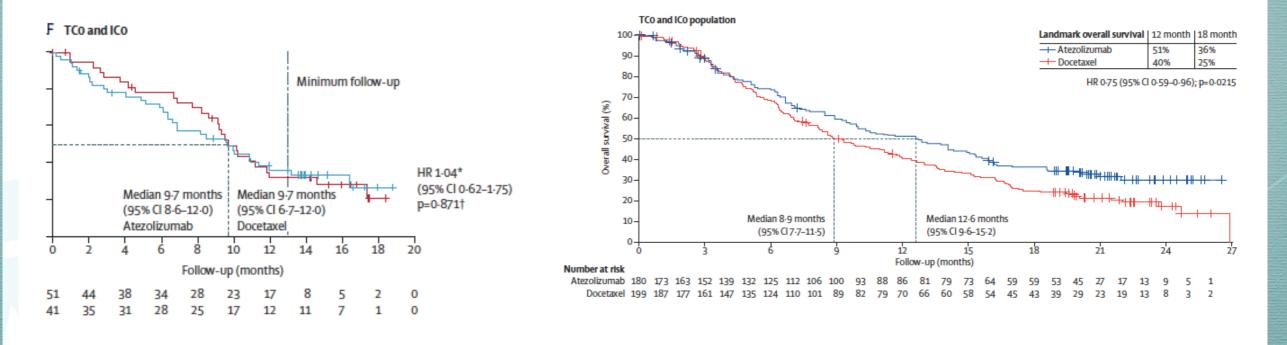
?

Immunological Factors:

Biomarker PD-L1


> ph1 Pembrolizumab study [KEYNOTE 001]

Garon et al, N Engl J Med 372:2018-2028, 2015 Suppl Material


Immunological Factors:

Lung cancer immunotherapy > ph3 Nivolumab nsq-NSCLC study [Checkmate 057];

Immunological Factors:

Lung cancer immunotherapy > ph2R and ph3 Atezolizumab studies [POPLAR-OAK]

	n (%)	HR*	95% CI	pvalue	Median overall survival	(months 195% CTI)			n (%)	Median overall su	urvival (months)		HR (95% CI)
					Atezolizumab (n=144)	Docetaxel (n=143)				Atezolizumab	Docetaxel		
TC3 or IC3 TC2/3 or IC2/3 TC2/2/3 or IC1/2/3	47 (16%) 105 (37%) 195 (68%)	0-49 0-54 0-59	0-22-1-07 0- <u>33</u> -0-89 0-40-0-85	0.068 0.014 0.005	15-5 (9.8-NE) 15-1 (8-4-NE) 15-5 (11-0-NE)	11-1 (67-14-4) 7-4 (60-12-5) 9-2 (7-3-12-8)		TC3 or IC3 TC2/3 or IC2/3 TC1/2/3 or IC1/2/3 TC0 and IC0	137 (16) 265 (31) 463 (54)	20-5 16-3 15-7 12-6	8-9 10-8 10-3		0-41 (0-27–0-64) 0-67 (0-49–0-90) 0-74 (0-58–0-93)
TCO and ICO Intention to treat	92 (32%) 287	1.04 073	0-62-1-75 0-53-0-99	0-871 0-040	9-7 (67-12-0) 12-6 (9-7-16-4)	97 (8-6-12-0) 97 (8-6-12-0)		ITT	379 (45) 850 (100)	13-8	8-9 9-6		0-75 (0-59–0-96) 0-73 (0-62–0-87)
							Favours atezolizumab Favours docetaxel					0-2 1 Favours atezolizumab Favours do	

Immunological Factors:

Lung cancer immunotherapy > ph1/2R Durvalumab [study 1108 expansion]

	High PD-L1 (n=154)	Low PD-L1 (n=116)	Total (n=287)
RECIST response (ORR)	39/154 (25.3%)	7/115 (6.1%)	50/285 (17.5%)
Treatment setting			
First line	14/49 (28.6%)	1/9 (11.1%)	16/59 (27.1%)
Second line	12/46 (26.1%)	1/24 (4.2%)	15/80 (18.8%)
≥ Third line	13/59 (22.0%)	5/82 (6.1%)	19/146 (13.0%)-19.6

Antonia et al, ESMO 2016

Critical Reviews in Oncology/Hematology 109 (2017) 35-41

Contents lists available at ScienceDirect

Critical Reviews in Oncology/Hematology

journal homepage: www.elsevier.com/locate/critrevonc

New perspectives in the second-line treatment of non squamous NSCLC patients: Results from a large Italian Lung Cancer Working Group

Diego Cortinovis^a, Vanesa Gregorc^b, Maria Rita Migliorino^c, Maria Ida Abate^a, Anna Manzo^d, Umberto Malapelle^e, Alessandro Morabito^{d,*}, on behalf of The Italian Lung Cancer Working Group¹

Oncology Hematology

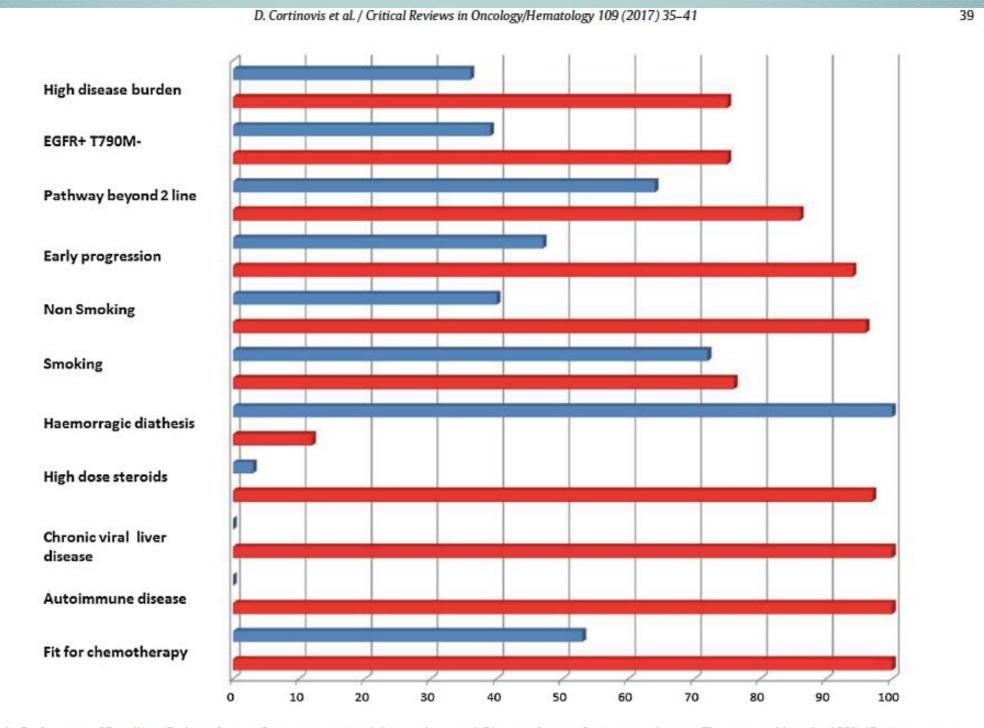
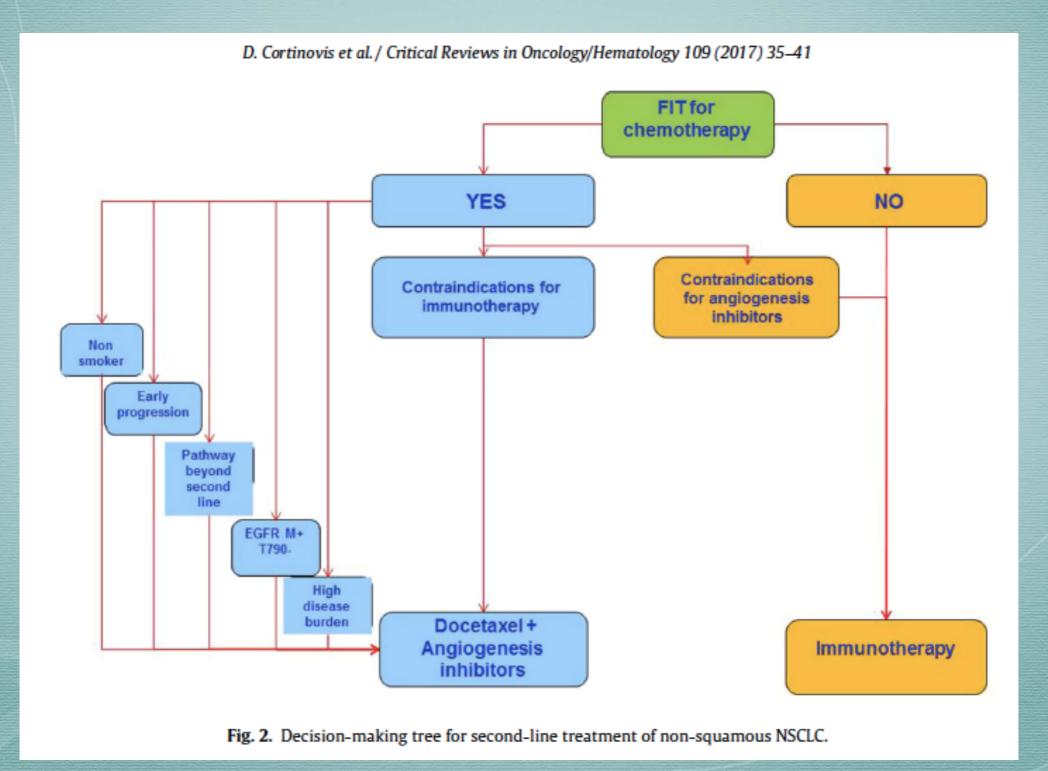
^a SC Oncologia Medica asst, Monza H S Gerardo, Italy

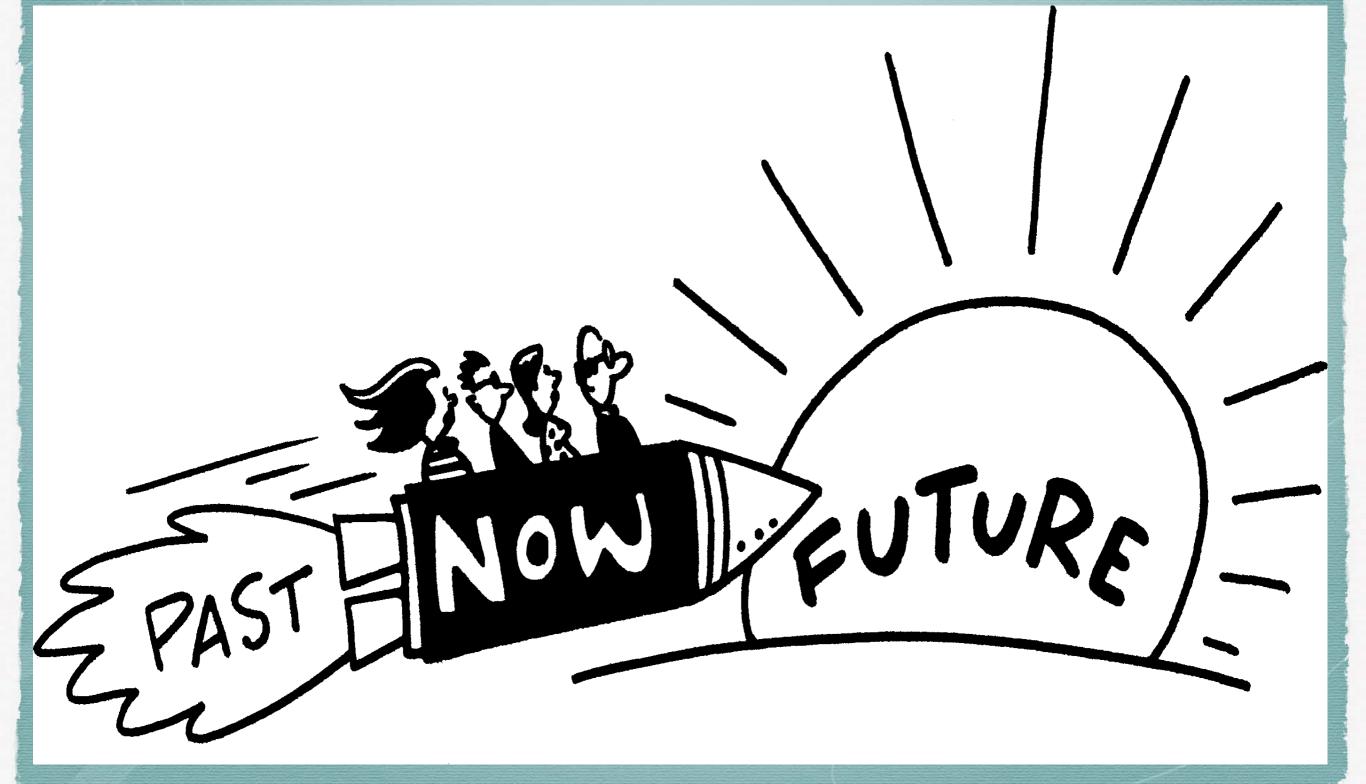
^b Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy

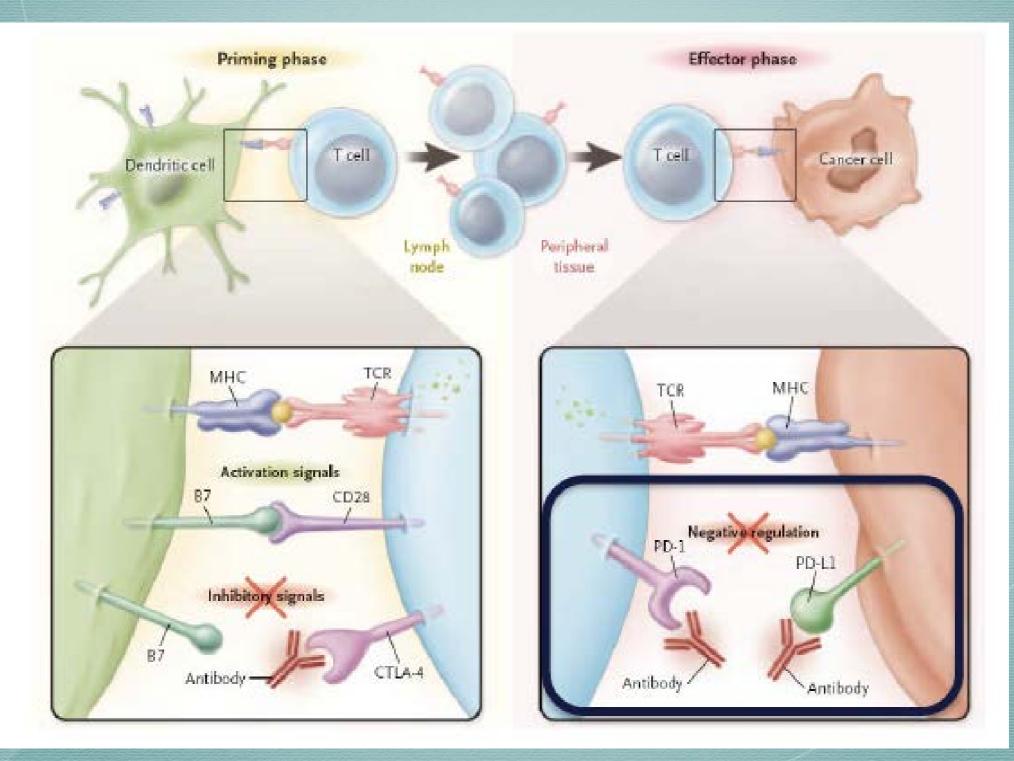
^c UOSD Pneumologia Oncologica, Azienda Ospedaliera San Camillo-Forlanini, Roma, Italy

d SC Thoracic Medical Oncology Istituto Nazionale Tumori, "Fondazione G. Pascale"-IRCCS, Napoli, Italy

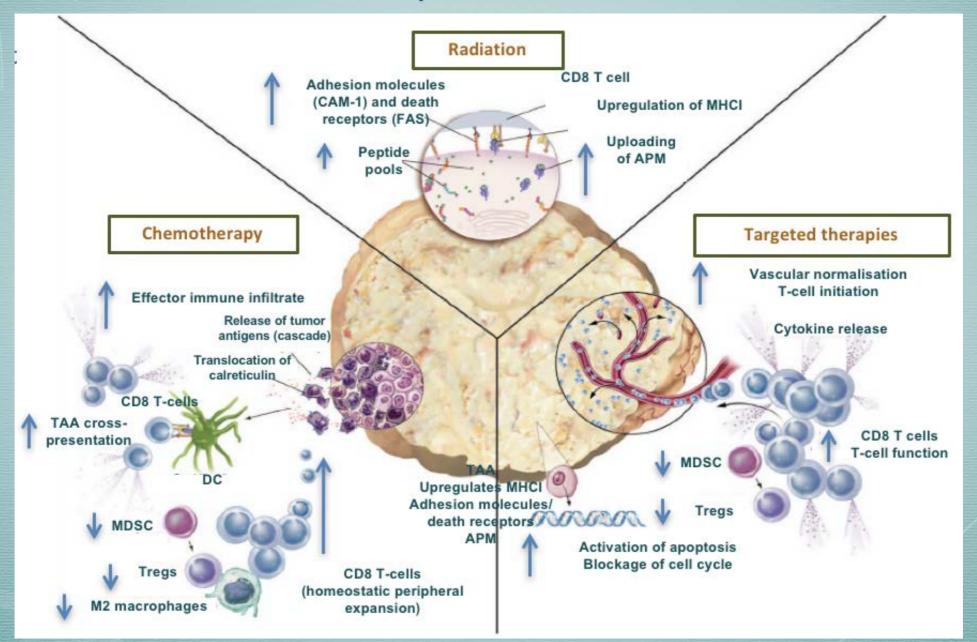
e Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Italy


Fig. 1. Preferences of Panellists. Red: preference for angiogenesis inhibitor + docetaxel. Blue: preference for immunotherapy. The sum could not be 100%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)


Key points

- 1. In non squamous NSCLC second line therapies improved median OS to 12 months thanks to the advent of antiangiogenic agents and immune check-point inhibitors
- No established predictive factors allow the right selection of these agents in clinical practice
- The chance to obtain the best results is associated to the employment of all drugs considered active
- 4. The clinical criteria that should be considered in the definition of a shared therapeutic decision in the second line setting should be: fit for chemotherapy, conditions contraindicating the use of angiogenesis inhibitors or immunotherapy, non-smoker status, early progression, therapeutic pathway expected beyond second line, EGFR mutation positive with T790 M negative resistant to TKIs and platinum based chemotherapy, high disease burden.


Future

Rivas a et al, NEJM. 2012

Future

Rationale for Investigating Opportunities to Combine Immunotherapy With Other Therapeutic Modalities

APM = antigen processing machinery; TAA = tumor-associated antigen.

1. Adapted from Hodge JW. Semin Oncol. 2012;39:323–339; 2. Drake CG. Ann Oncol. 2012;23(suppl 8):viii41–viii46; 3. Ménard C, et al. Cancer Immunol Immunother. 2008;57:1579–1587; 4. Hannani D, et al. Cancer J. 2011;17:351–358; 5. Ribas A at al. Curr Opin Immunol. 2013:25:291–296.

Future

- The impact that the new immunotherapy treatments may have on NSCLC outcomes is very exciting
- Checkpoint inhibition including PD-1 and its ligands PD-L1/PD-L2 have shown encouraging results
- Nivolumab and pembrolizumab, both PD-1 inhibitors, have recently received European licences as treatment in metastatic NSCLC
- There is hope that immunotherapy may be able to improve results in the adjuvant setting too
- Many new drugs and targeted treatments have developed in the last 10 years, which have added incremental benefits
- In the world post sequencing of the human genome, the challenge is to find relevant genes that may help us to more appropriately target our therapies
- The idea that one treatment fits all has faded. Most cancers now are being seen as many subgroups with different drivers of the oncogenic process

Conclusions

PD-1/PD-L1 Inhibitors in pretreated NSCLC

	CheckMate 017 phase 3 ¹²⁸		CheckMate 057 phase 3 ¹³⁴		KEYNOTE-010 phase 3***			POPLAR phase 2 ²²⁸		Durvalumab phase 1b ^{***}	Avelumab phase 1b ¹¹⁰
	Nivolumab	Docetaxel	Nivolumab	Docetaxel	Pembrolizumab 2 mg/kg	Pembrolizumab 10 mg/kg	Docetaxel	Atezolizumab	Docetaxel	Durvalumab	Avelumab
Patients (n)	135	137	292	290	345	346	343	144	143	198	184
Response rate (%)											
All patients	20	9	19	12	18	19	9	15	15	16	14
PD-L1 positive	21	8	36	13	30	29	8	38	13	27	16
PD-L1 negative	15	12	10	14	NA	NA	NA	8	10	5	10
Median progression- free survival (months)											
All patients	3-5	2-8	2-3	4-2	3.9	40	4.0	2.7	3-0	NA	2-9
PD-L1 positive	4-8	3-1	5.0	3-8	5-0	5-2	4.1	2.8	3-0	NA	3-0
PD-L1 negative	4-2	2-9	2.1	4-2	NA	NA	NA	1.7	4.1	NA	1-4
Median overall survival (months)											
All patients	9-2	6-0	12-2	9.4	10-4	12.7	8.5	12-6	9.7	NA	8-9
PD-L1 positive	10	6-4	19.4	8-1	14-9	17-3	8.2	15.5	9-2	NA	8-4
PD-L1 negative	8-5	6-1	9-8	10-1	NA	NA	NA	9.7	9.7	NA	4-6
Histology	SCC	SCC	Non-SCC	Non-SCC	All corners	All corners	All comers	All corners	All corners	All comers	All corners
Setting	Second line	Second line	Second line	Second line	Second line	Second line	Second line	Second line	Second line	Pre-treated	Pre-treated
PD-L1 expression											
Positive	<u>≥</u> 5%	<u>≥</u> 5%	<u>≥</u> 5%	<u>≥</u> 5%	Highly positive ≥50%; positive ≥1%	Highly positive ≥50%; positive ≥1%	Highly positive ≥50%; positive ≥1%	Tumour cell 1–3 or tumour- infiltrating immune cells 1–3		<u>≥</u> 25%	<u>≥</u> 1%
Negative	<5%	<5%	<5%	<5%	<1% (not included)	<1% (not included)	<1% (not included)	Tumour cell 0 a infiltrating imm		<25%	<1%
Percentages rounded.	Percentages rounded. PD-1-programmed death-1. PD-L1-programmed death ligand-1. SCC-squamous cell cancer. NA-not available.										

Table 4: Trials of anti-PD-1/PD-L1 inhibitors in patients with advanced NSCLC who were pre-treated with chemotherapy

Conclusions

Summary of phase III studies of immunotherapy in previously treated patients

	CheckMate 017 ¹ Nivolumab vs docetaxel	CheckMate 057 ¹ Nivolumab vs docetaxel	KEYNOTE-010 ² Pembrolizumab (2mg/kg or 10mg/kg) vs docetaxel	OAK ³ Atezolizumab vs docetaxel
Phase of study	III	III	11/111	III
PD-L1 selected	No	No	Yes (TPS* ≥1%)	No
Study size, n	272 (135 vs 137)	582 (292 vs 290)	1,033 (344 vs 346 vs 343)	1,225 (425 vs 425)*
Histology	Squamous	Non-squamous	All-comers	All-comers
Line of therapy, % 2L 3L >3L Other/unknown Subsequent CIT (immunotherapy arm vs chemo arm), %	100 0 0 0 <1 vs 2	88 11 <1 0 1 vs 2	69 20 9 <1 0.6 vs 1.7 vs 13.1	75 25 0 0 4.5 vs 17.2
Crossover from chemo arm to study immunotherapy, %	4	6	Not permitted	Not permitted
Median OS, months HR vs docetaxel (p value)	9.2 vs 6.0 0.62 (p=0.0004)	12.2 vs 9.5 0.75 (p<0.001)	10.4 vs 12.7 vs 8.5 2mg/kg: 0.71 (p=0.0008) 10mg/kg: 0.61 (p<0.0001)	13.8 vs 9.6 0.73 (p=0.0003)

*850 in primary population NR = not reached

"one size fits all"...fits no one

Take Home Messages

Therapeutic Sequence

Take Home Messages

Personalized therapy

