FIBRILLAZIONE ATRIALE E INSUFFICIENZA CARDIACA

Francesco Vetta MD PhD Direttore U.O. Cardiologia Ospedale Israelitico Roma

Global epidemiology of atrial fibrillation

Faisal Rahman, Gene F. Kwan and Emelia J. Benjamin

Nat. Rev. Cardiol. 11, 639-654 (2014)

Key points

- Atrial fibrillation (AF) is a worldwide epidemic affecting approximately 33 million people, and its rising prevalence is expected to account for increasing clinical and public health costs
- Australia, Europe, and the USA have the highest reported prevalence of AF (1% in the adult population), but the prevalence of AF in low-income and middle-income countries is probably underestimated
- AF is associated with an increased risk of myocardial infarction, heart failure, stroke, dementia, and chronic kidney disease, as well as increased mortality
- Treatment of patients with AF is inadequate: <50% of those at high thromboembolic risk receive anticoagulation therapy worldwide
- The dearth of data on the prevalence, lifetime risk, prognosis, prevention, treatment, and economic implications of AF in many regions around the world remains to be addressed

A Public Health Crisis: Heart Failure Hospitalizations have Tripled in 25 Years

- Più di 1.500.000 pazienti affetti da SC*
- **170.000** nuovi casi ogni anno*
- 500 ricoveri/giorno dovuti a SC*
- Incremento del 40% del numero di ricoveri negli ultimi 5 anni*
- Incidenza aumenta all'aumentare della classe d'età del paziente
- Numero di persone affette da SC raddoppia entro il 2030*

HR OF INCIDENT AF AND HF ACCORDING TO SHARED RISK FACTORS

Compromissione del riempimento Diastolico:

- **♦** Stroke Volume
- ◆ Cardiac Output

↑ LVEDP

↑ Catecolamine

Perdita della Funzionalità Atriale:

Frequenza Cardiaca non fisiologica

Risposta Ventricolare Irregolare

Perdita del Sincronismo A-V

Dilatazione Atriale Ipertrofia Atriale

↑ Pressione Atriale

Alterazione Neuro-Ormonale

- ↑ Refrattarietà
- ↑ Attività Ectopica

Combined AF and HF: Epidemiological and Prognostic Implications Formaire ID, Int I Mol Sci 2015, 16, 2123, 47

Ferreira JP Int J Mol Sci 2015; 16: 3133-47

In HF trials: AF prevalence = 13 - 41%

In AF trials: HF prevalence = 30 - 65%

The frequency of HF preceding AF = AF preceding HF

HF + AF = +33% in mortality

Atrial Fibrillation Begets Heart Failure and Vice Versa Temporal Associations and Differences in Preserved Versus Reduced Ejection Fraction (Circulation. 2016;133:484-492.

Rajalakshmi Santhanakrishnan, MBBS; Na Wang, MA; Martin G. Larson, SD; Jared W. Magnani, MD, MSc; David D. McManus, MD; Steven A. Lubitz, MD, MPH; Patrick T. Ellinor, MD, PhD; Susan Cheng, MD; Ramachandran S. Vasan, MD; Douglas S. Lee, MD, PhD; Thomas J. Wang, MD; Daniel Levy, MD; Emelia J. Benjamin, MD, ScM; Jennifer E. Ho, MD

Table 4. Concomitant AF and HF as Predictors of All-Cause Mortality

		Age and Sex A	djusted	Multivariable Adjusted		
Outcome	Predictor	HR (95% CI)†	P Value	HR (95% CI)†	P Value	
Mortality after new HF (n=598)	Prevalent AF	1.18 (0.98-1.42)	0.09	1.25 (1.04-1.51)	0.02	
	Interim AF	1.88 (1.50-2.35)	< 0.0001	1.89 (1.51-2.38)	< 0.0001	
Mortality after new HFpEF (n=221)	Prevalent AF	1.23 (0.90-1.68)	0.19	1.33 (0.97-1.83)	0.08	
	Interim AF	1.66 (1.15-2.39)	0.007	1.58 (1.08-2.30)	0.02	
Mortality after new HFrEF (n=289)	Prevalent AF	1.19 (0.91-1.56)	0.2	1.18 (0.90-1.56)	0.23	
	Interim AF	2.03 (1.47-2.80)	< 0.0001	2.02 (1.46-2.79)	< 0.0001	
Mortality after new AF (n=683)	Prevalent HFpEF	1.85 (1.43-2.40)	< 0.0001	1.83 (1.41-2.37)	< 0.0001	
	Prevalent HFrEF	2.77 (2.18-3.51)	< 0.0001	2.72 (2.12-3.48)	< 0.0001	
	Prevalent HFpEF vs HFrEF	0.67 (0.49-0.92)	0.01	0.67 (0.48-0.94)	0.02	
	Interim HFpEF	2.11 (1.57-2.83)	< 0.0001	2.31 (1.72-3.11)	< 0.0001	
	Interim HFrEF	2.43 (1.82-3.24)	< 0.0001	2.36 (1.76-3.16)	< 0.0001	
	Interim HFpEF vs HFrEF	0.87 (0.59-1.26)	0.46	0.98 (0.67-1.43)	0.91	

Treatment of Patients With Atrial Fibrillation and Heart Failure With Reduced Ejection Fraction

Circulation. 2017;135:1547-1563. DOI: 10.1161/CIRCULATIONAHA.116.026054

Atul Verma, MD Jonathan M. Kalman, MBBS, PhD David J. Callans, MD

Incidence of all-cause mortality of new onset AF stratified by HF status

Type of Atrial Fibrillation and Outcomes in Patients With Heart Failure and Reduced Ejection Fraction JACC VOL. 70, NO. 20, 2017

NOVEMBER 14/21, 2017:2490-500

Ulrik M. Mogensen, MD, PhD, ^{a,b} Pardeep S. Jhund, MBChB, PhD, ^a William T. Abraham, MD, ^c Akshay S. Desai, MD, MPH, ^d Kenneth Dickstein, MD, PhD, ^e Milton Packer, MD, ^f Jean L. Rouleau, MD, ^g Scott D. Solomon, MD, ^d Karl Swedberg, MD, PhD, ^{h,i} Michael R. Zile, MD, ^j Lars Køber, MD, DMSc, ^b John J.V. McMurray, MD, ^a on behalf of the PARADIGM-HF and ATMOSPHERE Investigators and Committees

Controversies in cardiovascular medicine

Atrial fibrillation in heart failure: what should we do?

European Heart Journal (2015) 36, 3250-3257 doi:10.1093/eurheartj/ehv513

Dipak Kotecha^{1,2*} and Jonathan P. Piccini³

Rhythm Control versus Rate Control for Atrial Fibrillation and Heart Failure

Atrial Fibrillation and Congestive Heart Failure Investigators

Cause	Rhythm-Control Group (N=682)	Rate-Control Group (N = 694)	P Value
	no. (%)	
Total deaths	217 (32)	228 (33)	0.68
Cardiovascular	182 (27)	175 (25)	0.53
Presumed arrhythmic cause	71 (10)	88 (13)	0.19
Congestive heart failure	73 (11)	57 (8)	0.11
Myocardial infarction	15 (2)	9 (1)	0.20
Stroke	9 (1)	11 (2)	0.68
Other	14 (2)	10 (1)	0.39
Noncardiovascular	35 (5)	53 (8)	0.06
Cancer	14 (2)	20 (3)	0.32
Renal failure	1 (<1)	2 (<1)	1.0
Trauma	0	1 (<1)	1.0
Sepsis	11 (2)	26 (4)	0.01
Other	9 (1)	4 (1)	0.15

Controversies in cardiovascular medicine

Atrial fibrillation in heart failure: European Heart Journal (2015) 36, 3250-3257 what should we do?

doi:10.1093/eurheartj/ehv513

Dipak Kotecha^{1,2*} and Jonathan P. Piccini³

Table 2 Antiarrhythmic drug therapy for atrial fibrillation in heart failure

Guidelines	Agent	Class	Safety	Efficacy
Recommended	Amiodarone	Mixed channel blockade	Risks of toxicity, including thyroid, hepatic, pulmonary, and neurological. ⁷⁸	Superior efficacy for maintenance of sinus rhythm vs. placebo: odds ratio 0.15 (95% CI 0.10–0.22). ⁷⁹
	Dofetilide	III	Requires inpatient stay for loading. Risk of torsades 0.8–3.3%. Not approved in EU.	Lower risk of all-cause rehospitalization in patients with AF at baseline vs. placebo: relative risk 0.70 (95% CI 0.56–0.89). ⁸⁰
Caution required	Dronedarone	Mixed channel blockade	Increased mortality in patients with HF and permanent AF. 15,81	Decreased risk of CV hospitalization or death in patients with AF and no recent HF decompensation vs. placebo: 0.76 (95% CI 0.69–0.84). ⁸²
	Sotalol	III	Concern for excess proarrhythmia in patients with acute myocardial infarction or LVEF ≤40%: relative risk 1.65 (95% CI 1.15–2.36) for all-cause mortality. ^{83a}	Sotalol was inferior to amiodarone in patients with AF (28% had NYHA class I/II HF). ⁸⁴
Contraindicated	Flecainide and Propafenone	I	Flecainide, encainide and moracizine increased mortality in patients with myocardial infarction. Bropafenone can precipitate decompensated HF, particularly in CYP 2D6 slow-metabolizers.	

^aSWORD evaluated D-sotalol rather than D,L-sotalol.

Rhythm control in atrial fibrillation

Jonathan P Piccini, Laurent Fauchier

Lancet 2016; 388: 829-40

Catheter Ablation of Atrial Fibrillation in Patients With Left Ventricular Systolic Dysfunction

A Systematic Review and Meta-Analysis

Circ Arrhythm Electrophysiol December 2014

Matteo Anselmino, MD, PhD; Mario Matta, MD; Fabrizio D'Ascenzo, MD;

C Catheter ablation efficacy at the end of follow-up Odds Ratio Odds Ratio Study or Subgroup Weight IV, Random, 95% CI IV. Random, 95% CI Anselmino (19) 4.8% 0.64 (0.60, 0.68) 4.1% 0.50 (0.40, 0.62) Bertaglia (23) Bunch (27) 4.7% 0.48 (0.45, 0.52) Calvo (20) 4.7% 0.49 [0.45, 0.54] 4.9% Chen (7) 0.79 [0.77, 0.80] 4.9% Choi (16) 0.52 [0.51, 0.53] De Potter (15) 4.4% 0.63 [0.54, 0.74] 3.7% 0.68 (0.51, 0.89) Efredimis (11) Fiala (32) 4.5% 0.64 (0.56, 0.73) 4.8% 0.46 (0.44, 0.49) Gentlesk (10) Hsu (8) 4.7% 0.66 [0.60, 0.73] 4.7% Hunter (28) 0.70 (0.65, 0.76) 4.7% 0.79 (0.72, 0.88) Jones (21) 0.74 [0.68, 0.80] 4.7% Khan (13) 4.4% Lim (29) 0.69 [0.59, 0.81] 0.49 [0.37, 0.68] Lutomsky (14) 3.6% 3.8% 0.51 [0.39, 0.65] MacDonald (17) Medi (25) 1.9% 0.64 (0.35, 1.17) Nueman (30) 4.2% 0.53 [0.44, 0.65] Pappone (22) 4.2% 0.70 [0.58, 0.86] 4.7% Pappone (24) 0.70 (0.65, 0.75) Tondo (9) 4.0% 0.81 [0.64, 1.03] Weerasooriya (26) 4.7% 0.37 [0.34, 0.40] 0.60 [0.54, 0.67] Total (95% CI) 100.0% Heterogeneity, Tau* = 0.05; Chi* = 1309.62, df = 22 (P < 0.00001); P = 98% 0.1 0.2 0.5 Test for overall effect: Z = 9.06 (P < 0.00001)

Catheter Ablation of Atrial Fibrillation in Patients With Left Ventricular Systolic Dysfunction

A Systematic Review and Meta-Analysis

Circ Arrhythm Electrophysiol December 2014

Matteo Anselmino, MD, PhD; Mario Matta, MD; Fabrizio D'Ascenzo, MD;

Rhythm control in atrial fibrillation

Jonathan P Piccini, Laurent Fauchier

Lancet 2016; 388: 829-40

	Number of patients	Atrial fibrillation pattern	Age (years)	Ablation as a first-line therapy	Ablation method	Outcome: sinus 1 year		s rhy thm at	
						Ablation	AAD	pvalue	
Krittayaphong et al (2003) ⁵⁴	30	Paroxysmal, persistent	55 (45-65; ablation); 47 (32-62; AAD)	No	Radiofrequency, PVI with LA lines; with CTI ablation and RA lines	79%	40%	0-02	
Wazni et al (RAAFT study; 2005) ⁵⁵	70	Mainly paroxysmal	53 (45-61; ablation); 54 (46-62; AAD)	Yes	Radiofrequency, PVI	87%	37%	<0.001	
Stabile et al (CACAF study; 2006) ⁵²	245	Paroxysmal, persistent	62 (53-71; ablation); 62 (52-72; AAD)	No	Radiofrequency, PVI with LA lines; with or without CTI ablation	56%	9%	<0-001	
Oral et al (2006) ⁵⁶	245	Persistent	57 (48-66)	No	Radiofrequency, CPVA	70%	4%	<0.001	
Pappone et al (APAF study; 2006) ^{sy}	198	Paroxysmal	55 (45–65; ablation); 57 (47–67; AAD)	No	Radiofrequency, CPVA with CTI ablation	86%	22%	<0-001	
Jais et al (A4 study; 2008) ⁵⁸	112	Paroxysmal	51 (40-62)	No	Radiofrequency, PVI with or without LA lines; with or without CTI ablation	89%	23%	<0-001	
Forleo et al (2008) ⁵⁹	70	Paroxysmal, persistent	63 (54-72; ablation); 65 (59-71; AAD)	No	Radiofrequency, PVI with or without LA lines; with or without CTI ablation	80%	43%	0-001	
Wilber et al (Thermocool study; 2010) [©]	167	Paroxysmal	56 (ablation); 56 (AAD)	No	Radiofrequency, PVI with or without LA lines with or without CFAEs; with or without CTI ablation with or without RA lines	66%	16%	<0-001	
Cosedis Nielsen et al (MANTRA-PAF study; 2012) ^{21,51}	294	Paroxysmal	56 (ablation); 54 (AAD)	Yes	Radiofrequency, circumferential PVI with voltage abatement	85%	71%	0-01	
Packer et al (STOP-AF study; 2013)61	245	Paroxysmal	57 (ablation); 56 (AAD)	No	Cryoablation, PVI; with or without LA lines	69.9%	7.3%	<0.001	
Morillo et al (RAAFT2 study; 2014) ⁵⁰	127	Mainly paroxysmal	56 (ablation); 54 (AAD)	Yes	Radiofrequency, circumferential PVI with electrical isolation	45%	28%	0-02	
Mont et al (SARA study; 2014) ⁵³	146	Persistent	55 (ablation); 55 (AAD)	No	Radiofrequency, PVI with or without LA lines with or without CFAEs	70%	44%	0-002	
Di Biase et al (AATAC study; 2016) ²⁵	203	Persistent with heart failure, LVEF <40%, ICD	62 (ablation); 60 (AAD)	No	Radiofrequency, PVI with or without LA posterior wall isolation with or without LA lines with or without CFAEs with or without SVC isolation	70%	34%	<0.001	

Controversies in cardiovascular medicine

Atrial fibrillation in heart failure: what should we do? European Heart Journal (2015) 36, 3250–3257 doi:10.1093/eurheartj/ehv513

Dipak Kotecha^{1,2*} and Jonathan P. Piccini³

Efficacy and Safety of Novel Oral Anticoagulants in Patients With Atrial Fibrillation and Heart Failure

A Meta-Analysis

JACC: HEART FAILURE VOL. 4, NO. 11, 2016 NOVEMBER 2016:870-80

Gianluigi Savarese, MD, ^{a,b} Robert P. Giugliano, MD, SM, ^c Giuseppe M.C. Rosano, MD, PhD, ^{d,e} John McMurray, MD, ^f Giulia Magnani, MD, ^c Gerasimos Filippatos, MD, PhD, ^g Santo Dellegrottaglie, MD, PhD, ^{h,i} Lars H. Lund, MD, PhD, ^b Bruno Trimarco, MD, PhD, ^a Pasquale Perrone-Filardi, MD, PhD

Efficacy and Safety of Novel Oral Anticoagulants in Patients With Atrial Fibrillation and Heart Failure

0.11

A Meta-Analysis

no HF

H

better

warfarin

better

NOACs

JACC: HEART FAILURE VOL. 4, NO. 11, 2016 NOVEMBER 2016:870-80

DOACS in HF vs no HF pts

2.03

1.64

0.81 (0.71, 0.93)

Gianluigi Savarese, MD, ^{a,b} Robert P. Giugliano, MD, SM, ^c Giuseppe M.C. Rosano, MD, PhD, ^{d,e} John McMurray, MD, ^f Giulia Magnani, MD, ^c Gerasimos Filippatos, MD, PhD, ^g Santo Dellegrottaglie, MD, PhD, ^{h,i} Lars H. Lund, MD, PhD, ^b Bruno Trimarco, MD, PhD, ^a Pasquale Perrone-Filardi, MD, PhD

ER ER p for RR (95% CI) Outcome **NOACs** Warfarin interaction Stroke/Embolism HF 1.60 1.87 0.86 (0.76, 0.97) 0.23 no HF 1.45 1.88 0.77 (0.68, 0.87) Major Bleeding HF H 2.35 3.06 0.77 (0.68, 0.87) 0.09 no HF 2.83 3.22 0.88 (0.79, 0.97) **Total Bleeding** HF 11.11 12.50 0.88 (0.80, 0.98) 0.99 no HF 14.66 16.57 0.90 (0.80, 1.00) Intracranial Bleeding 0.27 0.63 0.43 (0.33, 0.56) 0.32 0.41 0.80 0.51 (0.41, 0.64) no HF All-cause Death HF 5.05 5.37 0.94 (0.88, 1.01) 0.13 no HF 2.94 3.45 0.85 (0.77, 0.95) CV Death 3.47 HF 3.77 0.92 (0.84, 1.01)

Efficacy and Safety of Novel Oral Anticoagulants in Patients With Atrial Fibrillation and Heart Failure

A Meta-Analysis

JACC: HEART FAILURE VOL. 4, NO. 11, 2016 NOVEMBER 2016:870-80

Gianluigi Savarese, MD, ^{a,b} Robert P. Giugliano, MD, SM, ^c Giuseppe M.C. Rosano, MD, PhD, ^{d,e} John McMurray, MD, ^f Giulia Magnani, MD, ^c Gerasimos Filippatos, MD, PhD, ^g Santo Dellegrottaglie, MD, PhD, ^{h,i} Lars H. Lund, MD, PhD, ^b Bruno Trimarco, MD, PhD, ^a Pasquale Perrone-Filardi, MD, PhD

DOACS in HF pts

DOACS in HF pts

DOACS in no HF pts

Efficacy and Safety of Novel Oral Anticoagulants in Patients With Atrial Fibrillation and Heart Failure

A Meta-Analysis

JACC: HEART FAILURE VOL. 4, NO. 11, 2016 NOVEMBER 2016:870-80

Gianluigi Savarese, MD, ^{a,b} Robert P. Giugliano, MD, SM, ^c Giuseppe M.C. Rosano, MD, PhD, ^{d,e} John McMurray, MD, ^f Giulia Magnani, MD, ^c Gerasimos Filippatos, MD, PhD, ^g Santo Dellegrottaglie, MD, PhD, ^{h,i} Lars H. Lund, MD, PhD, ^b Bruno Trimarco, MD, PhD, ^a Pasquale Perrone-Filardi, MD, PhD

TABLE 1 Baseline Characteristics of Trials Included in the Analysis

	ARIS	TOTLE	ENGA	GE AF	RE	-LY	ROCK	ET AF	TO:	TAL	HF vs. No HF
	HF	No HF	HF	No HF	HF	No HF	HF	No HF	HF	No HF	p Value
Year	20	013	20	015	20	013	20)13			
Treatment	Apix 5 mg tw	aban ice daily	Edox 60 mg oi	kaban nce daily	Dabig 150 mg tv	gatran wice daily	Rivard 20 mg or	oxaban nce daily			
FUP, yrs	1	.5	2	.8	2	.0	1.9	94	N	Α	NA
Patients, %	5,943	8,728	8,145	5,926	3,263	8,835	9,033	5,138	26,384	28,627	NA
Females, %	33	35	38	38	34	39	39	40	36	38	< 0.01
Age, yrs	69	71	70	75	68	73	72	74	70	73	0.03
CHADS ₂	2.46	1.88	3.00	2.60	2.65	2.00	3.70	3.15	2.95	2.41	0.22
Hypertension, %	83	90	94	93	75	80	93	86	86	87	< 0.01
Diabetes, %	26	25	31	44	27	22	42	35	31	31	1.00
Prior MI/CAD, %	22	11	15	8	32	26	22	10	23	14	< 0.01
NYHA functional classes I-II, %	57	NA	78	NA	NA	NA	69	NA	68	NA	NA
NYHA functional classes III-IV, %	23	NA	22	NA	NA	NA	31	NA	25	NA	NA
Aspirin, %	33	30	31	29	NA	NA	31	25	32	28	< 0.01
Detsky quality score	10	0%	10	0%	95	5%	10	0%	100	0%	NA
Definition of HF	within with re preserv	stive HF 3 months educed or	class C	ory of HF or D ing to the CC	class II HF syn within		Left vent ejection	ricular n <40%	NA	NA	NA

admission for HF

ROCKET AF Subanalysis heart failure – Results

Efficacy endpoints by treatment and HF

ROCKET AF Subanalysis heart failure – Results

Safety endpoints by treatment and HF

Oral Anticoagulant Agents in Patients With Atrial Fibrillation and Heart Failure

Does Heart Failure Status Influence Efficacy and Safety?*

Faiez Zannad, MD, PhD, João Pedro Ferreira, MD, PhD

JACC: HEART FAILURE VOL. 4, NO. 11, 2016 NOVEMBER 2016:881-4

Trial	HF Definition	HHF Endpoints	HF Stratification	Severe Renal Impairment	Potential for Improvement
RE-LY	NYHA class ≥II LVEF	No	No	Excluded	HF etiology HF treatment
ROCKET-HF	HF history LVEF <40%	No	No	Excluded	Volume statusLoop diuretic dose
ENGAGE AF-TIMI 48	HF history NYHA class	No	No .	Excluded	Previous HF hospitalizations IV loop diuretic agents during index hospitalization
ARISTOTLE	HF history LVEF <40%	No	No	Excluded	 Natriuretic peptide levels Concomitant antiplatelet agents

Review Article

Heart Failure in Patients with Chronic Kidney Disease: A Systematic Integrative Review

BioMed Research International Volume 2014, Article ID 937398, 21 pages http://dx.doi.org/10.1155/2014/937398

Liviu Segall, Ionut Nistor, and Adrian Covic

Cerebrovascular Disease: Stroke Subtype

Hemorrhagic stroke (17%)

Intracerebral hemorrhage (59%)

SAH (41%)

Ischemic stroke (83%)

Lacunar small vessel disease (25%)

Atherothrombotic disease (20-25%)

Embolism (20%)

Cryptogenic (30%)

Albers GW et al. Chest. 1998;114:683S-698S. Rosamond WD et al. Stroke. 1999;30:736-743.

AF accounts for 15% of strokes HF accounts for 9% of strokes

STATE-OF-THE-ART PAPER

Antiplatelet and Anticoagulant Agents in **Heart Failure**

Current Status and Future Perspectives

Paul A. Gurbel, MD, Udaya S. Tantry, PhD Baltimore, Maryland

J Am Coll Cardiol HF 2014;2:1-14)

Risk of stroke in congestive heart failure with and without atrial fibrillation International Journal of Cardiology 248 (2017) 182–187

Si-Hyuck Kang a,1 , Joonghee Kim b,1 , Jin Joo Park a , Il-Young Oh a , Chang-Hwan Yoon a , Hee-Jun Kim c , Kyuseok Kim b,* , Dong-Ju Choi a,*

Warfarin and Aspirin in Patients with Heart Failure and Sinus Rhythm

The investigators in the Warfarin versus Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Study Group are

Figure 1. Cumulative Incidence of the Primary Outcome.

The primary outcome was the time to the first event in the composite end point of ischemic stroke, intracerebral hemorrhage, or death from any cause.

Analysis of the Controlled Rosuvastatin in Multinational Trial Heart Failure (CORONA) and the Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca-Heart Failure (GISSI-HF) Trials

Circulation. 2015;131:1486-1494.

Analysis of the Controlled Rosuvastatin in Multinational Trial Heart Failure (CORONA) and the Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca-Heart Failure (GISSI-HF) Trials Circulation. 2015;131:1486-1494.

Table 2. Best Clinical Model for Stroke Based on Forward Stepwise Cox Proportional Hazard Regression

Variables	Hazard Ratio	Lower 95% Cl	Upper 95% Cl	χ² Value	Coefficients	Standard Error	<i>P</i> Value
Age (per 10 y increase)	1.34	1.18	1.63	16.2	0.331	0.082	<0.001
NYHA class (NYHA III and IV)	1.60	1.21	2.12	10.8	0.472	0.143	0.001
Diabetes mellitus treated with insulin	1.87	1.22	2.88	8.1	0.626	0.220	0.004
BMI (per 5 kg/m ² increase up to 30)	0.74	0.60	0.91	7.9	-0.301	0.107	0.005
Previous stroke	1.81	1.19	2.74	7.8	0.591	0.212	0.005

Analysis of the Controlled Rosuvastatin in Multinational Trial Heart Failure (CORONA) and the Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca-Heart Failure (GISSI-HF) Trials Circulation. 2015;131:1486-1494.

Table 3. Final Model for Stroke Based on Forward Stepwise Cox Proportional Hazard Regression, Adding NT-proBNP to Independent Predictors Identified in Table 2 (n=2632)

Variables	Hazard Ratio	Lower 95% Cl	Upper 95% Cl	χ² Value	Coefficients	Standard Error	<i>P</i> Value
Log NT-ProBNP	1.32	1.11	1.57	10.4	0.280	0.087	0.001
Diabetes mellitus treated with insulin	2.09	1.19	3.70	6.5	0.739	0.290	0.011
Previous stroke	1.92	1.10	3.35	5.3	0.653	0.283	0.021

Analysis of the Controlled Rosuvastatin in Multinational Trial Heart Failure (CORONA) and the Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca-Heart Failure (GISSI-HF) Trials

Circulation. 2015;131:1486-1494.

AF = 1.6% /year No AF = 1.2% / year

No AF (upper tertile) = 2 % /year AF no OAC = 2.2% / year

Rationale and design of a randomized, double-blind, event-driven, multicentre study comparing the efficacy and safety of oral rivaroxaban with placebo for reducing the risk of death, myocardial infarction or stroke in subjects with heart failure and significant coronary artery disease following an exacerbation of heart failure: the COMMANDER HF trial

European Journal of Heart Failure (2015) doi:10.1002/eihf.266

