LE PATOLOGIE DELLA MIELINA: GLI STRUMENTI PER LA DIAGNOSI DIFFERENZIALE

Cremona 9 giugno 2017

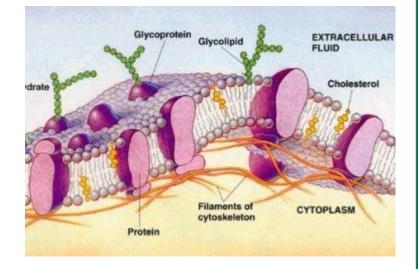
DIAGNOSI DIFFERENZIALE DELLE MALATTIE DEL SISTEMA NERVOSO PERIFERICO

Il ruolo della diagnostica di laboratorio

Marinella Carpo UOC Neurologia-Stroke Unit ASST Bergamo Ovest

No conflicts of interest

Sistema Socio Sanitario Regione Lombardia ASST Bergamo Ovest


TABLE 2: Autoantibodies to	gangliosides and	their association with GB	S.
----------------------------	------------------	---------------------------	----

AMAN Axonal dysfunction AMAN	Younger, predominantly male, facial nerve involvement Reversible conduction failure, ataxia Distal weakness, low amplitudes for the compound muscle action potentials, facial palsy Potential target Ophthalmoparesis Reversible conduction failure, rapidly progressive stage, distal distribution of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[96] [97] [96, 96] [98] [99] [100] [96, 97] [97] [101]
dysfunction	Reversible conduction failure, ataxia Distal weakness, low amplitudes for the compound muscle action potentials, facial palsy Potential target Ophthalmoparesis Reversible conduction failure, rapidly progressive stage, distal distribution of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[96, 96] [98] [99] [100] [96, 97] [97]
dysfunction	Distal weakness, low amplitudes for the compound muscle action potentials, facial palsy Potential target Ophthalmoparesis Reversible conduction failure, rapidly progressive stage, distal distribution of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[98] [99] [100] [96, 97] [97]
dysfunction	potentials, facial palsy Potential target Ophthalmoparesis Reversible conduction failure, rapidly progressive stage, distal distribution of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[99] [100] [96, 97] [97]
AMAN	Ophthalmoparesis Reversible conduction failure, rapidly progressive stage, distal distribution of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[100] [96, 97] [97]
AMAN	Reversible conduction failure, rapidly progressive stage, distal distribution of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[96, 97] [97]
AMAN	of weakness, not sensitive to plasma change treatment Ophthalmoplegia Ataxia	[97]
	Ataxia	
		[101]
	Ophthalmoparesis	[100]
	Ophthalmoparesis	[100]
	Ataxia, ophthalmoparesis	[101, 102]
	Potential target	[103]
	Severe disability, mechanical ventilation	
	Severe disability, mechanical ventilation	
	Pure motor GBS, conduction blocks at intermediate nerve	
	Potential target	
	Potential target	
	Potential target	[105]
AMAN	Reversible conduction failure	[96]
	AMAN	Severe disability, mechanical ventilation Severe disability, mechanical ventilation Pure motor GBS, conduction blocks at intermediate nerve Potential target Potential target Potential target

Gangliosides & GBS

- Gangliosides are glycosphingolipids predominantly distributed on the cellsurface membrane and anchored in the external leaflet of the lipid bilayer by a ceramide moiety.
- Gangliosides composed of a ceramid attached to one or more sugar, contain sialic acid linked to the oligosaccaride core that is exposed extracellulary.
- Gangliosedes are abundant in the peripheral nerve (nodes and paranodes)

- Anti-ganglioside antibodies firstly described in GBS in 1988 (Ilyas et al, Ann Neurol)
- Anti-GM1 and anti-GD1a antibodies in AMAN with Campylobacter enteritis. (Yuki et al Neurology 1990 & Muscle & Nerve 1992)

Antibodies against single ganglioside

 Table 1. Well established and emerging phenotypic association of antiganglioside antibodies

Antiganglioside	Phenotype		
antibody specificity	Well established	Putative associations	
Anti-GD1a	AMAN	GBS with CN involvement, PCB, polyneuritis cranialis	
Anti-GM1	AMAN	Pure motor GBS, GBS without CN involvement	
Anti-GQ1b	MFS, BBE	MFS-PCB, MFS-GBS, MFS-BBE, polyneuritis cranialis, acute bulbar palsy, extraocular muscle weakness	
Anti-GT1a	РСВ	GBS with bulbar weakness, acute bulbar palsy, AMAN	
Anti-GM2°	AIDP	limited CN palsies	
Anti-GD1b	Sensory GBS, GBS with bulbar weakness		
Anti-GalNAc-GD1a	Pure motor GBS		

AIDP, acute inflammatory demyelinating polyneuropathy; AMAN, acute motor axonal neuropathy; BBE, Bickerstaff's brainstem encephalitis; CN, cranial nerve; GBS, Guillain–Barré syndrome; MFS, Miller Fisher syndrome; PCB, pharyngeal–cervical–brachial variant GBS. "Anti-GM2 antibodies can be IgG or IgM; all others are IgG.

Goodfellow JA & Wilison HJ Current Opinion 2016

useful in routine clinical practice:

 ✓ when positive in patients with a compatible clinical syndrome, they are strongly supportive of the diagnosis

 ✓ may identify a regional or pathological variant.

Antiganglioside-complex antibodies

multiple glycolipid and lipid components can associate to form neoantigens not present in any single molecule

Ganglioside complexes as new target antigens in Guillain-Barre syndrome. Kaida K et al. Ann Neurol 2004; 56:567 - 571.

 Table 2. Emerging antibody-phenotype associations for antigangliosides complexes antibodies

Anti-GCS antibody specificity	Emerging phenotype associations	e
Anti-GD1a/GD1b	Mechanical ventilation	n
Anti-LM1 complexes	AIDP or AMAN°	
Anti-GM1/GalNAc-GD1a	Pure motor GBS, AMC	CBN
Anti-GM1b/GA1	Pure motor GBS	
Anti-GQ1b complex	Various variant feature	es
Anti-glycolipid complex	Table 3	Table

Clinical feature	Associated antigens	
Axonal electrophysiology	CTH/GM1, GD2/GM1, globoside/GM1, GalC/GM1, GA1/GM1, GM1, GM1/ GD1b, SM/GM1, GM3/GM1, GM1/GD3, SGPG/GM1, GM2/GM1, PS/GM1, sulfatide/GM1, GA1/GalC, GM1/GQ1b, GA1, GA1/globoside	
Greater disease severity	CTH/GA1, globoside/GA1, PS/GalC, GA1/GalC, globoside/GD3, GD2/GD3, GA1, GD3/GT1b, GalC/GQ1b	
Need for mechanical ventilation	CTH/GA1, globoside/GA1	
Preceding Campylobacter jejuni infection	GD1a/GT1b, GD3/GD1a, sulfatide/GD1a, GalC/GD1a, GM2/GD1a, GD1a, GD1a/ GQ1b, GD2/GD1a, CTH/GD1a	
No cranial nerve deficit	Sulfatide/GM1, sulfatide/GT1a	

Antibodies against GCS may be useful in identifying specific clinical subtypes or predicting clinical progression.

Goodfellow JA & Wilison HJ Current Opinion 2016

Pathogenetic mechanism in acute immune-mediated neuropathies

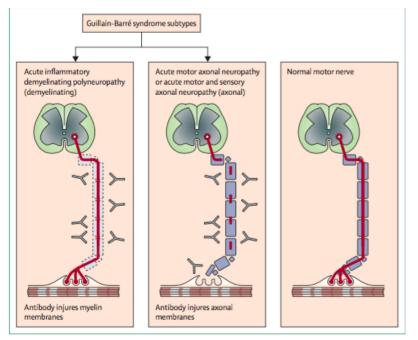
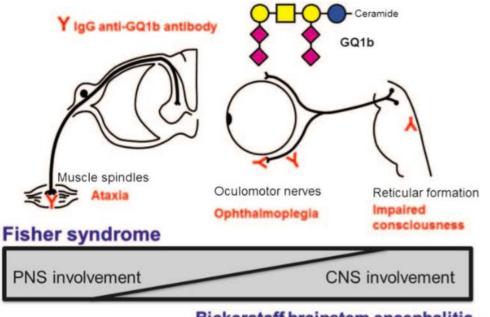
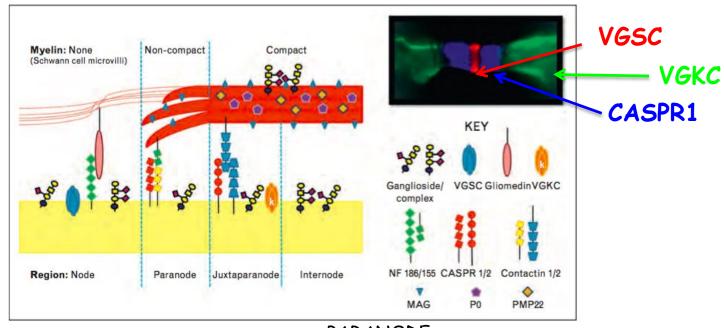



Figure 2: Major Guillain-Barré syndrome subtypes in which antibody-mediated effector pathways, including complement activation, cause glial or axonal membrane injury with consequent conduction failure

- the main phenotypes: acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN)
- IMMUNE INJURY specifically takes place at the myelin sheath and related Schwann-cell components in AIDP, whereas membranes on the nerve axon in AMAN
- Distinct phenotypes supported by the identification of specific antibody biomarkers (anti-GM1 & GD1a IgG) for AMAN

Pathogenetic mechanism in acute immunemediated neuropathies


Bickerstaff brainstem encephalitis

- GQ1b: paranodes of III, IV and VI nerves, muscle spindles in the limbs, and probably reticular formation in the brainstem.
- Anti-GQ1b antibodies against oculomotor nerves and muscle spindles induce Fisher syndrome.
- anti-GQ1b antibodies to brainstem induce Bickerstaff brainstem encephalitis

Shahrizaila N, et al. J Neurol Neurosurg Psychiatry 2013;84:576-583.

THE NODAL COMPLEX

NODE

cell adhesion molecules (CAMs): gliomedin, NF186 and other neuron glia-related CAM (NrCAM)

Functions:

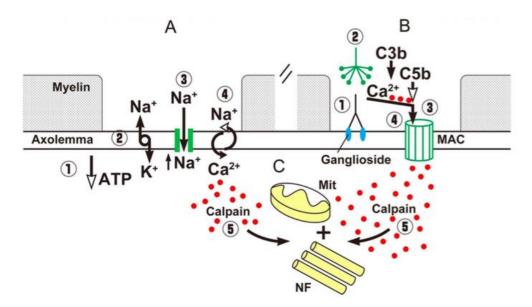
- initial clustering of Na+ channels during development
- long-term maintainence of VGSC clustering at the node of Ranvier.

PARANODE

axoglial junctions (paranodal loops and axonal membrane): contactin-1/caspr-1 complexes which bind to NF155 of Schwann cell

Functions:

- form and maintain the paranodal septate junctions.
- effective saltatory conduction
- membrane barrier to limit lateral diffusion of ion channels, ensuring that Na+ is concentrated at the node and K+ at the juxtaparanode.


Mechanism of action of anti-ganglioside antibodies in AMAN

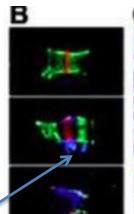
Some AMAN patients with anti-ganglioside antibodies recovered promptly and completely; early neurophysiological studies show rapidly reversible CB (RCB) that later disappear suggesting a transient impaired conduction at the node of Ranvier due to anti-ganglioside antibodies.

Possible events leading to axonal degeneration

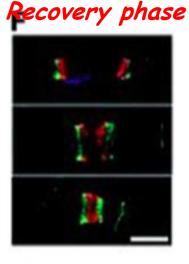
- 1. Antibodies bind to gangliosides in the axolemma
- 2. Classical pathway of complement is activated

3. The terminal component of complement form the membrane attack complex (MAC) pore

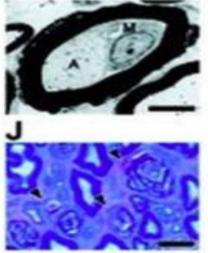
4. Ca^{2+} enters through the MAC pores and accumulates in the axoplasma


5. Activation of Ca^{2+} -dependent calpain causing proteolytic cleavage of neurofilaments, damage of mitochondria and finally Wallerian degeneration

Uncini Revue Neurologique 2016,


Acute nodal disruption + RCB

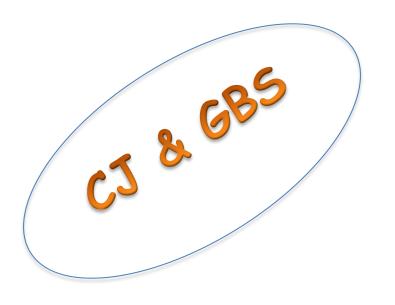
with prompt recovery Normal to enlarged node



Ventral root from normal to AMAN rabbits with anti-GM1 antibodies

Axonal degeneration with poor outcome

Abnormally lengthened node and paranodal myelin detachment



NODOPATHY: acute neuropathy with anti-ganglioside antibodies

Nodo-paranodopathy: beyond the demyelinating and axonal classification in anti-ganglioside antibodymediated neuropathies. Uncini A, Susuki K, Yuki N. Clin Neurophysiol 2013;124:1928-34.

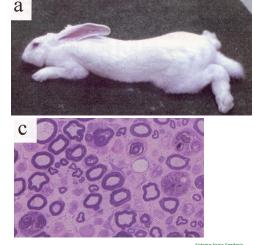
Uncini Revue Neurologique 2016, Uncini & Kuwabara J Neurol Neurosurg Psychiatry 2015

Meet Campylobacter Jejuni

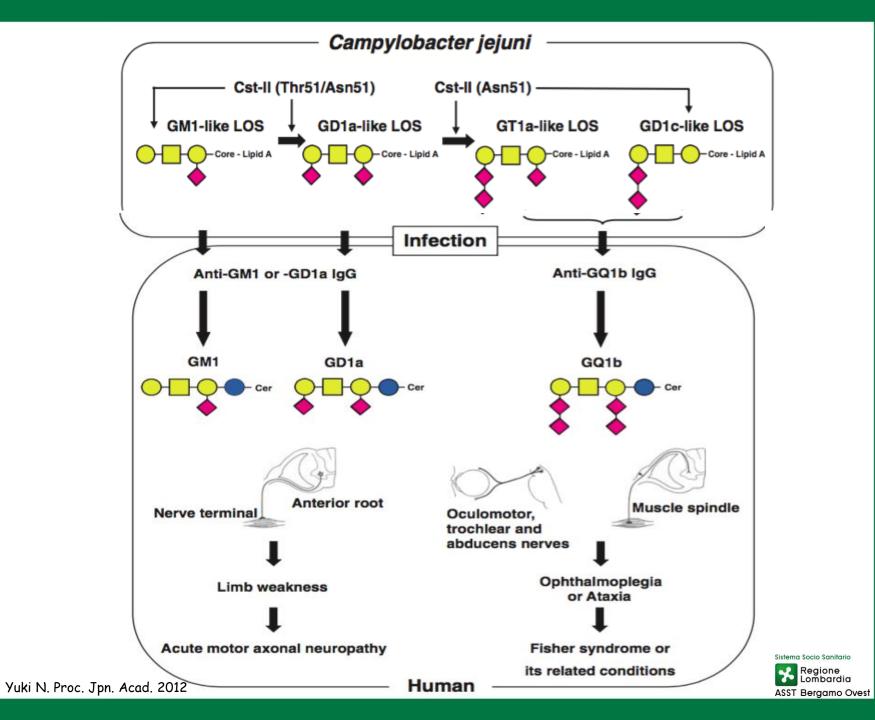
Despite her obvious beauty, *C. Jejuni* loves to hang around in feces ... especially in poultry. This cutie is why they tell you to clean extra carefully when you're handling raw chicken. She responds well to antibiotics, but if you don't stop her, she can paralyze or even kill her unwitting victims.

- Diarrhoeal illness can precede GBS
- CJ is one of the most common cause of acute gastroenteritis worldwide
- GBS associated with antecedent CJ infection was in 1982 (Rhodes et al. Br Med J)
- 1995 a case-control study established an epidemiological association between CJ infection and GBS (*Rees et al. N Eng J Med*)

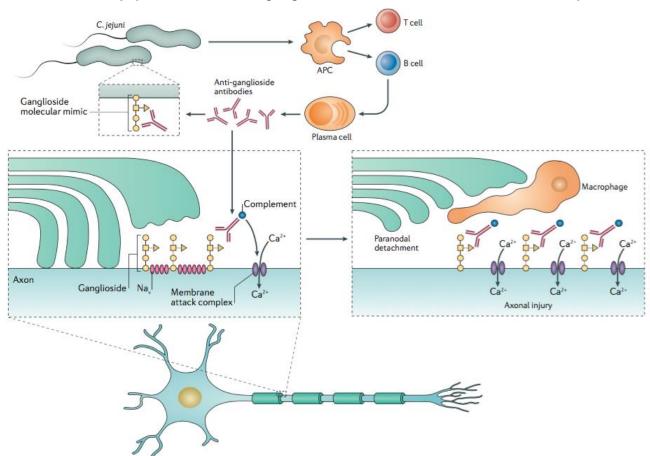
CJ & gangliosides & GBS


...the lipo-oligosaccharides of the CJ strains have structural similarity with various gangliosides present on peripheral nerve membranes, indicating that molecular mimicry of gangliosides could contribute to GBS. *Yuki, N. et al. A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178, 1771-1775 (1993)*

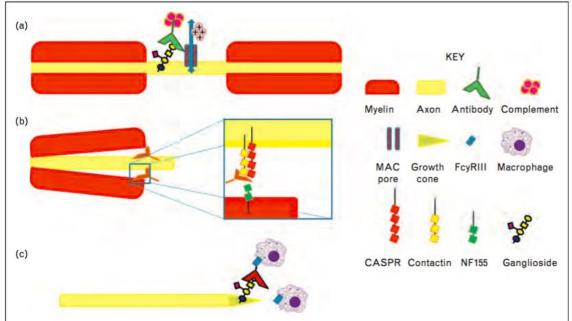
...lipo-oligosaccharides from the CJ strains associated with MFS were shown to have identical structures to ganglioside GQ1b.


Yuki, N. et al. Molecular mimicry between GQ1b ganglioside and lipopolysaccharides of Campylobacter jejuni isolated from patients with Fisher's syndrome. Ann. Neurol. 36, 791–793 (1994).

....immunization of rabbits with the ganglioside-like lipooligosaccharides from GBS-associated CJ strains resulted in a subacute flaccid tetraplegia and pathological changes similar to AMAN.


Yuki, N. et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barré syndrome. Proc. Natl Acad. Sci. USA 101, 11404–11409 (2004).

Mechanism of Guillain-Barré syndrome pathogenesis mediated by Campylobacter jejuni: molecular mimicry



A molecular mimic of gangliosides in CJ leads to the production of anti-ganglioside antibodies (IgG1 e IgG3) that bind to gangliosides in the axonal membrane at the node of Ranvier. Consequent activation of complement leads to disruption of VGSC clusters, disruption of the nodal architecture, and formation of the membrane attack complex, which leads to calcium influx. These changes cause axonal injury and attract macrophages, which can then migrate between the axon and myelin.

Goodfellow JA & Willison HJ NATURE REVIEWS, NEUROLOGY 2016

The potential diverse pathophysiological mechanisms of neuropathy-associated autoantibodies.

- (a) Antibody binding at the node of Ranvier, which may be directed against gangliosides or nodal proteins, activates the complement cascade. MAC pores are deposited in the axolemma, forming a nonspecific ion channel which disrupts control of the membrane potential and thus transmission of the action potential. In addition, calcium influx through the pore can activate calpains and subsequently lead to axonal degeneration.
- (b) Antibodies directed against **paranodal** proteins such as contactin-1 inhibit axoglial interactions in a complement independent fashion (IgG4). Antibodies may also cause a loss or mislocalization of voltage-gated ion channels.
- (c) Antibodies targeting gangliosides inhibit axonal regeneration by interaction with specific Fc receptors on macrophages

TAKE HOME MESSAGE

□ Anti-GM1/GD1a/GQ1b IgG can interfere with nodal function

- any disruption of nodal function interfere with normal nerve excitability and membrane potentials, contributing to conduction failure by interfering with saltatory conduction
- □ Anti-gangliosides may allow identification of specific clinical subtypes, predict clinical progression...
- Image: Image:

