

Immunoterapia

Giuseppe Curigliano MD, PhD Istituto Europeo di Oncologia Milano, Italia

Immunotherapy in combination

Immunotherapy in combination

- Agents must be safe in combination
- The additional therapy should not interfere with the immunotherapeutic mechanism of action that is driving the antitumor response

PD1-PDL1 spectrum of activity

CTLA-4 spectrum of activity

Potential I-O combinations

1. Lu H. Front Immunol. 2014;5:1-5. 2. Melero I, et al. Nat Rev Cancer. 2015;15(8):457-472. 3. Drake CG. Ann Oncol. 2012;23 Suppl 8:viii41-viii46, 4. Vanneman M, et al. Nat Rev Cancer. 2012;12(4):237-251. 5. Sznol M, et al. Clin Cancer Res. 2013;19(19):5542. 6. Formenti SC, et al. J Natl Cancer Inst. 2013;105(4):256-265. 7. Kang J, et al. J ImmunoTher Cancer. 2016;4:51.

"Priming" with CT or RT

cytotoxic agent or radiotherapy

Translocation of Calreticulin to the cell surface

Activation of HSP90

Release of High Mobility Group Box 1 protein

Effect of chemotherapy

CT, chemotherapy; DC, dendritic cell; MDSC, myeloid-derived suppressor cells; MHC, major histocompatibility complex; RT, radiotherapy; TReg, T regulatory cells Champiat S, et al. J Thorac Oncol. 2014;9(2):144-153. Galluzzi L, et al. Cancer Cell. 2015;28(6):690-714.

Effect of chemotherapy

Nivolumab + Platinum-Based Doublet Chemotherapy

KEYNOTE-021:Carboplatin/Pemetrexed ± Pembrolizumab in Nonsquamous Advanced NSCLC

Rizvi NA, et al. J Clin Oncol. 2016;34(25):2969-2979.

Langer CJ, et al. Lancet Oncol. 2016;17(11):1497-1508.

The TONIC trial

Short-term 'induction' or "priming" with radiation or chemotherapy can modulate the anticancer immune response resulting in an increased activity of anti-PD1

- <u>Irradiation</u> can induce immunogenic cell death, overcome T-cell exclusion and promote antigen presentation¹
- <u>Doxorubicin</u> increases production of interferons, reduces myeloid-derived suppressor cells (MDSC)-induced immune suppression^{2,3}
- <u>Cyclophosphamide (low dose)</u> depletes Tregs in human breast tumors⁴
- <u>Cisplatin</u> stimulates class I HLA and vulnerability of tumor cells for T cell killing^{5,6}

Inclusion criteria

- Metastatic TNBC (ER<10%, HER2 negative)
- Max 3 lines of chemotherapy for metastatic disease
- LDH < 2x ULN
- Accessible lesion for biopsy and radiation
- WHO PS 0-1
- Evaluable disease
- No history of leptomeningeal disease, no symptomatic CNS disease

Study design

"Boosting" after "priming"

	total (n = 50)
best objective response rate (ORR=CR+PR) iRECIST	24%
clinical benefit rate (CR+PR+SD)	26%
complete response (CR)	1 (2%)
partial response (PR)	11 (22%)
stable disease ≥24weeks (SD)	1 (2%)
ORR RECIST1.1	22%
median progression-free survival (PFS) [95% CI]	3.4 months [2.5-3.7]
median time to response (TTR) [range]	8.4 weeks [2-14]
median duration of response (DOR) [95% CI]	9 months [5.5 – NA]

PACIFIC: A DOUBLE-BLIND, PLACEBO-CONTROLLED PHASE III STUDY OF DURVALUMAB AFTER CHEMORADIATION THERAPY IN PATIENTS WITH STAGE III, LOCALLY ADVANCED, UNRESECTABLE NSCLC

Luis Paz-Ares¹, Augusto Villegas², Davey Daniel³, David Vicente Baz⁴, Shuji Murakami⁵, Rina Hui⁶, Takashi Yokoi⁷, Alberto Chiappori⁸, Ki Hyeong Lee⁹, Maike de Wit¹⁰, Byoung Chul Cho¹¹, Maryam Bourhaba¹², Xavier Quantin¹³, Takaaki Tokito¹⁴, Tarek Mekhail¹⁵, David Planchard¹⁶, Haiyi Jiang¹⁷, Yifan Huang¹⁷, Phillip A. Dennis¹⁷, Mustafa Özgüroğlu¹⁸

¹Hospital Universitario 12 de Octubre, CiberOnc, Universidad Complutense and CNIO, Madrid, Spain; ²Cancer Specialists of North Florida, Jacksonville, FL, USA; ³Tennessee Oncology, Chattanooga, TN, and Sarah Cannon Research Institute, Nashville, TN, USA; ⁴Hospital Universitario Virgen Macarena, Seville, Spain; ⁵Kanagawa Cancer Center, Yokohama, Japan; ⁶Westmead Hospital and the University of Sydney, Sydney, NSW, Australia; ⁷Kansai Medical University Hospital, Hirakata, Japan; ⁸H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; ⁹Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea; ¹⁰Vivantes Klinikum Neukoelln, Berlin, Germany; ¹¹Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea; ¹²Centre Hospitalier Universitaire de Liège, Liège, Belgium; ¹³CHU Montpellier and ICM Val d'Aurelle, Montpellier, France; ¹⁴Kurume University Hospital, Kurume, Japan; ¹⁵Florida Hospital Cancer Institute, Orlando, FL, USA; ¹⁶Gustave Roussy, Villejuif, France; ¹⁷AstraZeneca, Gaithersburg, MD, USA; ¹⁸Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey

Acknowledgement: Dr. Scott J. Antonia of H. Lee Moffitt Cancer Center and Research Institute is the lead author for this study; Dr. Paz-Ares is presenting on his behalf

esmo.org

PACIFIC: Study Design

Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study

Immunogenicity

*Defined as the time from randomization (which occurred up to 6 weeks post-cCRT) to the first documented event of tumor progression or death in the absence of progression. **ClinicalTrials.gov number: NCT02125461** BICR, blinded independent central review; cCRT, concurrent chemoradiation therapy; DoR, duration of response; HR, hazard ratio; ITT, intention-to-treat; NSCLC, non-small cell lung cancer; ORR, objective response rate; PS, performance status; q2w, every 2 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; WHO, World Health Organization

Patient Disposition

	Durvalumab (N=476)	Placebo (N=237)
Received treatment, n (%)	473 (99.4)	236 (99.6)
Treatment ongoing at data cutoff, n (%)	30 (6.3)	12 (5.1)
Completed 12 months of treatment, n (%)	202 (42.7)	71 (30.1)
Discontinued study treatment, n (%)	241 (51.0)	153 (64.8)
Subject decision	14 (3.0)	12 (5.1)
Adverse event	73 (15.4)	23 (9.7)
Severe non-compliance to protocol	1 (0.2)	1 (0.4)
Condition under investigation worsened	148 (31.3)	116 (49.2)
Development of study specific discontinuation criterion	1 (0.2)	1 (0.4)
Other	4 (0.8)	0
Ongoing in the study at data cutoff, n (%)	346 (73.2)	144 (61.0)
Discontinued study, n (%)	121 (25.6)	92 (39.0)
Received subsequent therapy after discontinuation, n (%)	145 (30.5)	102 (43.0)

Baseline Characteristics (ITT)

		Durvalumab (N=476)	Placebo (N=237)	Total (N=713)
Age	Median (range), years	64 (31–84)	64 (23–90)	64 (23–90)
	≥65 years, %	45.2	45.1	45.2
Male, %		70.2	70.0	70.1
WHO performance status score, %*	0/1	49.2 / 50.4	48.1 / 51.5	48.8 / 50.8
Smoking status, %	Current / Former / Never	16.6 / 74.4 / 9.0	16.0 / 75.1 / 8.9	16.4 / 74.6 / 9.0
Disease stage, % [†]	IIIA / IIIB	52.9 / 44.5	52.7 / 45.1	52.9 / 44.7
Histology, %	Squamous / Non-squamous	47.1 / 52.9	43.0 / 57.0	45.7 / 54.3
PD-L1 status, %	Known: TC <25% / TC ≥25%	39.3 / 24.2	44.3 / 18.6	41.0 / 22.3
	Unknown [‡]	36.6	37.1	36.7
Prior chemotherapy, %	Adjuvant / Induction / Definitive cCRT	0.6 / 25.8 / 99.8	0.4 / 28.7 / 99.6	0.6 / 26.8 / 99.7
Prior radiotherapy, %*	<54 Gy	0.6	0	0.6
	54 to ≤66 Gy	92.9	91.6	92.4
	>66 to ≤74 Gy	6.3	8.0	6.9
	>74 Gy	0	0	0
Best response to prior cCRT, % ¹	CR / PR / SD / PD	1.9 / 48.7 / 46.6 / 0.4	3.0 / 46.8 / 48.1 / 0	2.2 / 48.1 / 47.1 / 0.3

*Not reported or missing (durvalumab, placebo, total): WHO performance status (0.4% each), prior radiotherapy (0.2%, 0.4%, 0.3%).

¹Other: durvalumab, 2.5%; placebo, 2.1%; total, 2.4%.¹No sample collected or no valid test result. [¶]Not evaluable/not applicable: durvalumab, 2.3%; placebo, 2.1%; total, 2.2%.

CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease; TC, tumor cell; TC >25%, >25% PD-L1 expression on tumor cells; TC <25%, <25% PD-L1 expression on tumor cells.

PFS by BICR (Primary Endpoint; ITT)

Antitumor Activity by BICR (ITT)

Confirm	ned Objective	Response		Durvalumab (N=443)*	Placebo (N=213)*
ך ³⁵ ך	- P<0	0.001	Best overall response, n (%)		
30 -			Complete response	6 (1.4)	1 (0.5)
ਹਿ 25 -			Partial response	120 (27.1)	33 (15.5)
ے ب 20 م	(24.28–32.89)	Т	Stable disease	233 (52.6)	119 (55.9)
6) 20	Progressive disease	73 (16.5)	59 (27.7)		
- ¹⁵			Non-evaluable	10 (2.3)	1 (0.5)
- ¹⁰ ba		(11.31–21.59)	Duration of response, months		
° 5 -	20 /	16.0	Median (95% Cl)	NR	13.8 (6.0–NR)
0 ⊥	28,4	16,0	Ongoing response at data cutoff, % [†]		
_	Durvalumab	Placebo	At 12 months	72.8	56.1
	(N=443)*	(N=213)*	At 18 months	72.8	46.8

*Patients with measurable disease at baseline. [†]Percentages calculated by Kaplan-Meier method.

Duration of Response by BICR (ITT)

NR, not reached.

Time to Death or Distant Metastasis by BICR (ITT)

Summary

- Durvalumab demonstrated a statistically significant and robust improvement in PFS of >11 months versus placebo (HR 0.52; P<0.0001) at a planned interim analysis
 - The 12-month PFS rate was 55.9% with durvalumab and 35.3% with placebo, and the 18-month PFS rate was 44.2% and 27.0%, respectively
- PFS improvement with durvalumab was observed across all pre-specified subgroups, including patients who were unexpected to respond
 - e.g. non-smokers and patients with PD-L1 low/negative expression status
- Durvalumab demonstrated clinically meaningful improvement in ORR of 12% (P<0.001), with durable responses versus placebo (median DoR not reached vs 13.8 months)
- Patients receiving durvalumab had a lower incidence of new lesions, including new brain metastases, compared with patients receiving placebo
- Durvalumab was well tolerated with a manageable safety profile compared with placebo

Targeted therapies and I-O

1. Lu H. Front Immunol. 2014;5:1-5. 2. Melero I, et al. Nat Rev Cancer. 2015;15(8):457-472. 3. Drake CG. Ann Oncol. 2012;23 Suppl 8:viii41-viii46, 4. Vanneman M, et al. Nat Rev Cancer. 2012;12(4):237-251. 5. Sznol M, et al. Clin Cancer Res. 2013;19(19):5542. 6. Formenti SC, et al. J Natl Cancer Inst. 2013;105(4):256-265. 7. Kang J, et al. J ImmunoTher Cancer. 2016;4:51.

Targeted therapies and I-O

Atezolizumab + Cobimetinib in KRAS^{mut} mCRC

Confirmed Response per RECIST v1.1	<i>KRAS-</i> Mutant CRC (n = 20)	All CRC Patients (N = 23)
ORR	20%	17%
SD	20%	22%
PD	50%	52%
NE	10%	9%

Bendell JC, et al. J Clin Oncol. 2016;34(Suppl): Abstract 3502.

Targeted therapies and I-O

MEK inhibition triggers anti-tumour immunity

Antiangiogenesis and I-O

Bendell JC, et al. J Clin Oncol. 2015;33(Suppl 3): Abstract 704.

PARP inhibitors and I-O

Curtin NJ, et al. Nat Rev Cancer. 2012;12(12):801-817.

CDK 4-6 inhibitors and I-O

CDK4/6 inhibition triggers anti-tumour immunity

Goel S. Et al Nature 548, 471–475 (24 August 2017)

Radiotherapy and I-O

1. Lu H. Front Immunol. 2014;5:1-5. 2. Melero I, et al. Nat Rev Cancer. 2015;15(8):457-472. 3. Drake CG. Ann Oncol. 2012;23 Suppl 8:viii41-viii46, 4. Vanneman M, et al. Nat Rev Cancer. 2012;12(4):237-251. 5. Sznol M, et al. Clin Cancer Res. 2013;19(19):5542. 6. Formenti SC, et al. J Natl Cancer Inst. 2013;105(4):256-265. 7. Kang J, et al. J ImmunoTher Cancer. 2016;4:51.

Abscopal effect

- Proof-of concept trial
- Included patients with stable or progressing metastatic solid tumours (≥3 measurable lesions) on single-agent chemotherapy or hormone therapy
- Simon two-stage design: ≥1 abscopal response in first 10 patients (stage 1)

"Boosting" after "priming"

Demaria S, et al. Front Oncol. 2012;2:153.

I-O combination

1. Lu H. Front Immunol. 2014;5:1-5. 2. Melero I, et al. Nat Rev Cancer. 2015;15(8):457-472. 3. Drake CG. Ann Oncol. 2012;23 Suppl 8:viii41-viii46, 4. Vanneman M, et al. Nat Rev Cancer. 2012;12(4):237-251. 5. Sznol M, et al. Clin Cancer Res. 2013;19(19):5542. 6. Formenti SC, et al. J Natl Cancer Inst. 2013;105(4):256-265. 7. Kang J, et al. J ImmunoTher Cancer. 2016;4:51.

I-O combination

αPD-1/PD-L1 + αCTLA-4 Phase III Trials	Tumor Type	
Nivolumab + ipilimumab	Neoadjuvant: NSCLC	
	1L: NSCLC, HNSCC, Urothelial cancers, RCC, Gastric, MPM	
	2L: ED-SCLC, NSCLC after progression on EGFR TKI (T790M-), GBM	
Durvalumab + tremelimumab	1L: NSCLC, HNSCC, Urothelial cancers, ED-SCLC (+ chemo) 2L: HNSCC	

LAG3: CD4 homologue, binding MHC II

Expression

- On exhausted T cells
- On TIL
- On T regs
- On NK

Function

 Confers a Treg function on CD4 naïve T cells

LAG3 negatively regulates

- T-cell activation
- Proliferation
- Homeostatic expansion

Soluble LAG3 is an immunoadjuvant

Adapted from Nature Reviews Immunology 15; 2015: 45-56

I-O combination

*Six patients had clinical progression prior to their first scan and are not included in the plot. One patient with best change from baseline > 30% had an unconfirmed best response of SD.

I-O combination

*Six patients had clinical progression prior to their first scan and are not included in the plot. *Censored on last visit. *Evaluations are planned for every 8 weeks.

GITR

Expression of GITR

Cell type		
	Naïve	Activated
Regulatory T cells	High	Very high
T cells (CD4/CD8)	Intermediate	High
NK cells	Intermediate	High
Granulocytes	Intermediate	High
Mast cells	Intermediate	Intermediate
Eosinophils	Intermediate/low	
Basophils	Intermediate/low	
Monocytes	Low	Intermediate

GITR

Function:

CA009-002: for solid tumors alone or in combination with Nivolumab

J Ex Med; 210(9), 1695–1710

Anti IDO-1 and I-O

^aOverall response is PD (SD for target lesions; PD for non-target lesions). ^bOverall response is PD (target lesions not assessed; PD per new lesions). ^cOverall response is PD (PR for target lesions; PD per new lesions).

dOverall response is PR (CR for target lesions; non CR/non PD for non-target lesions).

Gangadhar TC, et al. Presented at: 2015 SITC Annual Meeting; November 4-8, 2015; National Harbor, MD. Abstract O7.

Anti IDO-1 and I-O

Sunday June 4, Clinical Science Symposium; Hall D1 (9:45 AM to 11:15 AM)

Abstract 105: A phase lb dose escalation study of combined inhibition of IDO1 (GDC-0919) and PD-L1 (atezolizumab) in patients (pts) with locally advanced or metastatic solid tumors

Presenter: Howard A Burris

Monday, June 5, GU (nonprostate); Arie Crown Theater (8:00 AM to 11:00 AM)

Abstract # 4503: Epacadostat + pembrolizumab in patients with advanced urothelial carcinoma: Preliminary phase I/II results of ECHO-202/KEYNOTE-037)

Presenter: David C Smith

Monday, June 5, Development Therapeutics; Hall D1 (1:15 PM to 4:15 PM)

Abstract #3003: Epacadostat + nivolumab in patients with advanced solid tumors: Preliminary phase I/II results of ECHO-204

Presenter: Raymond P Perez

Tuesday, June 6, Clinical Science Symposium; S100a (8:00 AM to 9:30 AM)

Abstract 6010: Epacadostat + pembrolizumab in patients with SCCHN: Preliminary phase I/II results from ECHO-202/KEYNOTE-037.

Presenter: Omid Hamid

Oncolytic virus and I-O

T-VEC (IT) + Ipilimumab (IV)

Puzanov I, et al. J Clin Oncol. 2016;34(22):2619-2626.

Other approaches for priming

Combination of immune-checkpoints

Next future

<u>T</u> cell <u>d</u>ependent <u>b</u>ispecific antibody (TDB) platform

- · Produced using modular "knobs into holes" technology
- Effector functions removed (E. coli production / N297A)
- · Minimal immunogenic potential
- · PK is similar to conventional IgG1

4

Next future

From immunogram to cancer-immune set point

Cancer-Immune set point

The cancer-immune set point of a particular person is already determined by the time of clinical presentation, driven by the inherent immunogenicity of the tumour and by the responsiveness of the individual's immune system.

The features that determine the set point may therefore reflect genetic factors that are specific to a given tumour, the genetics of the person with cancer, or the extent to which antitumour immunity had developed initially.

Top 21 deferentially expressed pathways between ICR 1 and ICR 4

Manual P

C.

Hendrickx W et al. 2017, Oncoimmunology

Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis

We validated these findings in a large metacohort of 1954 cancer gene expression data.

The ICR4 phenotype, which displays the upregulation of immune-regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged survival.

D. Bedognetti, ... G Curigliano et al. 2016, In press

Survival and immune phenotypes

Numbers at risk

Numbers at risk

The number of non-silent or total mutations progressively decreased from ICR4 to ICR1, with a strong interaction with intrinsic molecular subtypes. No differences were observed among ICRs regarding the proportion of somatic mutations yielding predicted neoantigens.

TP53 mutations were enriched in the immune favorable phenotype (ICR4).

Specific somatic mutations and immunephenotypes according to intrinsic molecular subtypes

MAP3K1#

MAP2K4#

MAP3K1#∕#

Cancer-Immune set point

Immunotherapy may work as a consequence of either its direct effect on F_{stim} and F_{inhib} (the cancer-immunity cycle) or its ability to alter the set point (enhancing the cancer-specific T-cell response).

The idea of a set point provides a frame-work to help organize the torrent of clinical and biomarker data that will emerge over the coming months and years.

Priorities

What are the priority / most rational IObased combinations to explore? How can we best balance efficacy with safety with IO-based combinations? What influence does tumour type have on key considerations and priorities for IObased combination therapy?

Thank you

