

IN GASTROENTEROLOGIA

17-18 MARZO 2017 ISEO (BS) Iseo Lago Hotel - Via Colombera, 2

Maria Chiara Petrone U.O.C. Endoscopia Bilio-Pancreatica ed Ecoendoscopia IRCCS – Ospedale San Raffaele, Milano

Nuove strategie per la diagnosi precoce del tumore pancreatico

Tumore del pancreas

Componente strutturale	Istotipo	Incidenza vs tumori
Epitelio insulare	Tumore endocrino	1%-2%
Epitelio duttale	Adenocarcinoma duttale	90%

227.000 deaths annually worldwide

Siegel R, Cancer J Clin 2014

I NUMERI DEL CANCRO IN ITALIA 2016

IN GASTROENTEROLOGIA

Rango	Tutta la popolazione	
1°	Polmone (19%)	
2°	Colon-retto (11%)	
3°	Mammella (7%)	
4°	Stomaco (6%)	
5°	Pancreas (6%)	

IN GASTROENTEROLOGIA

Sopravvivenza a 5 anni dalla diagnosi

Pancreas	6,9 (6,8-7,0)	7,2 (6,7-7,7)	
Colon	57,0 (56,8-57,3)	60,8 (60,4-61,3)	
Prostata	83,4 (83,1-83,6)	88,6 (88,1-89,0)	
Mammella femminile	81,8 (81,6-82,0)	85,5 (85,1-85,8)	

Diagnosi precoce

Ad oggi non esistono metodi per la diagnosi precoce del carcinoma del pancreas. La malattia è di solito per lungo tempo asintomatica; solamente il 7% dei casi è diagnosticato in stadio iniziale.

PANCREATIC CANCER

The facts:

Sporadic PC	90%
Familial PC	7%
Inherited Cancer Syndromes	3%

GENERAL POPULATION SCREENING WOULD BE GREAT!

However...

Overall lifetime risk of developing PC is relatively low, close to 1% and does not meet some of the criteria established by WHO

Hruban RH et al. Adv Surg 2010 www.who.int/cancer/detection/variouscancer/en

By contrast, only patients with a significant increased risk of develop PC could opt to screening test

Sporadic PC	
Familial PC	7%

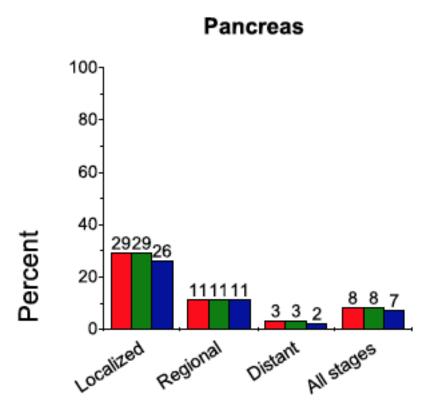
Inherited Cancer Syndromes 3%

CAPS, FaPaCa, Ducth Study MRI and EUS have been proposed

Sporadic PC 90% Familial PC 7% Inherited Cancer Syndromes 3%

SURGERY IS CURRENTLY THE ONLY CHANCE FOR CURE

80% of cases present at an advanced stage 53% already have distant metastase at time of diagnosis

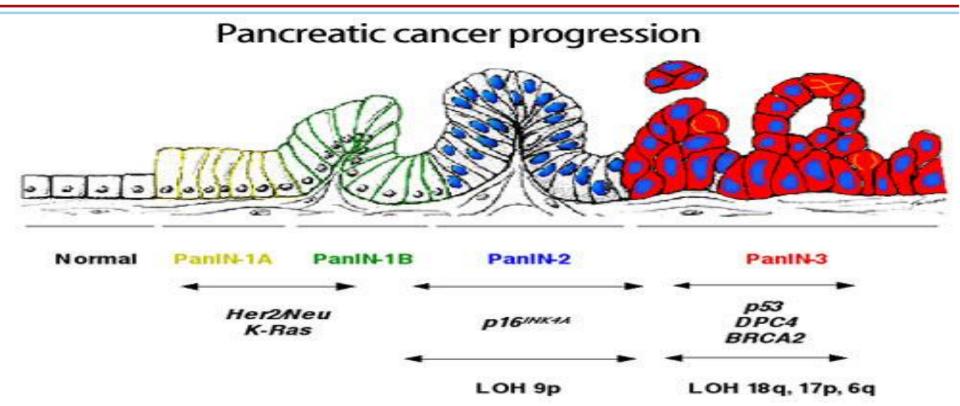

10% of cases are treated surgically with a curative intent Ideal surgical candidate- 5 year survival rate of 20-30%

Hidalgo M. N Engl J Med 2010

Rebecca L. Siegel, MPH¹; Kimberly D. Miller, MPH²; Ahmedin Jemal, DVM, PhD³

Five-Year Relative Survival Rates by Stage at Diagnosis and Race

CA CANCER J CLIN 2017;67:7-30


imperative need!!

detection at an earlier stage and development of effective therapies "cornerstones" for cancer death reduction SCREENING STRATEGIES

Which is the "earliest stage" of pancreatic ductal adenocarcinoma?

PanIN-1: hyperplastic and benign

PanIN-2: low grade dysplasia

PanIN-3: high-grade dysplasia or carcinoma in situ

Invasive PC: cancerous ductal cells move through the basement membrane

- Minute PC (<10mm) → stage IA (rarely detcted)</p>
- Small PC (< 20mm)→ stage IB (10% of diagnosed PC, 45% metastatic)
- Large PC (> 20mm) → stage II 90% diagnosed PC
 - Chari ST et al. Pancreas 2015

Only 20% of PC's are elegible for resection with curative intent with average size of 30 mm.

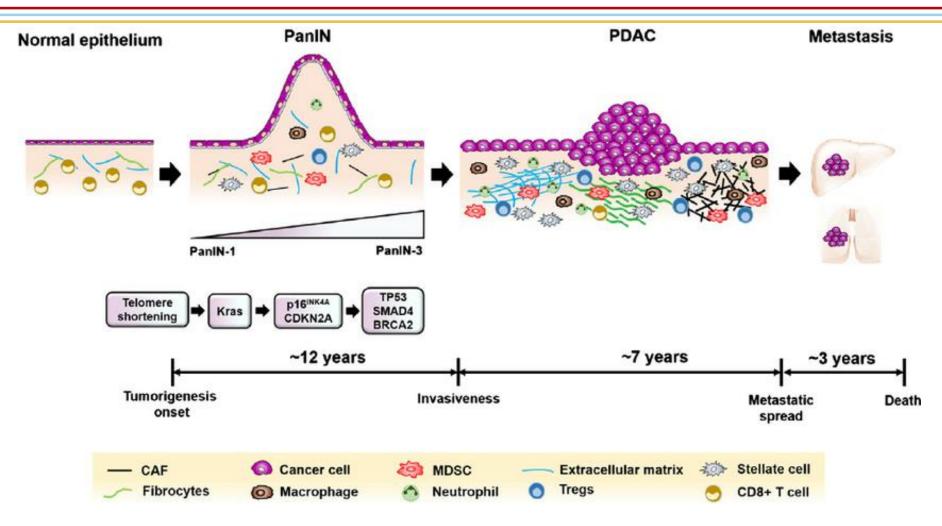
Lesions with

■PanIN-3,

invasive cancer confined to the pancreas (Stage 1A – 1B)
 resectable PC (Stage II)

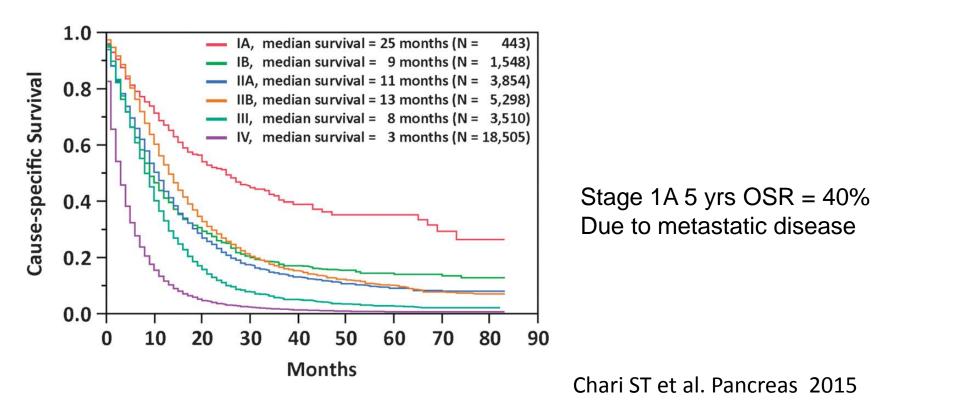
can be considered «early» as they are all resectable

- Definition of the earliest actionable lesion in the progression of PC is challenging
- PC with any degree of invasion is biologically advanced → propensity for systemic micrometastasis
- Even with the potential of micrometastatic disease the survival of surgical patients is better vs not surgical
- Size is related to survival


As far back as possible in the diagnostic timeline

Timeline of Progression PanIN-1 → Large PC

Yachida S, Nature 2010



- Genetic timeline for progression from initiation of the malignant clone to metastatic disease → 2 decades
- Clinical timeline from resectable to unresectable
 - Onset of symptoms \rightarrow related to unresectable disease
 - PC undetectable by CT > 6 months before symptom

Pelaez Luna M, Am J Gastsroenterol 2007

 Lesions < 2 cm are mostly resectable but quite always undetected by CT (lack of sensitivity in identifying small cancers → not good method for early detection.

Early Detection and Treatment

Only **PanIN-3** (carcinoma in situ) which is a preinvasive lesion can be considered the only target lesion **CURABLE**

Pancreas • Volume 44, Number 5, July 2015

	Current Proportions	Doubling of Survival	Tripling of Survival	Quadrupling of Surviva
Stage				
IA	1.3	5.9	12.7	22.6
IB	4.7	13.4	21.8	28.8
IIA	11.6	22.0	26.6	26.2
IIB	16.0	19.9	17.9	13.1
III	10.6	8.7	5.8	3.2
IV	55.8	30.1	15.1	6.1
Relative proportion parameter	1.0	1.5	2.0	2.7
Average 5-y survival	4.1%	8.2%	12.3%	16.4%

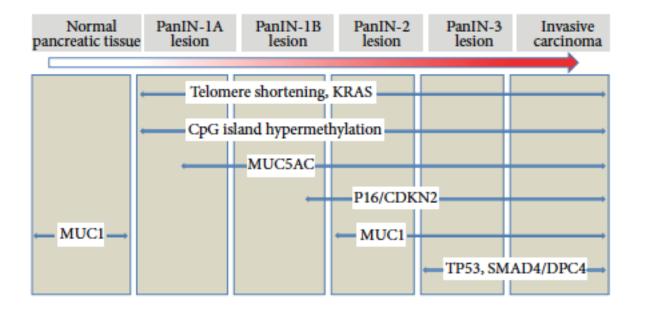
*A Cox proportional hazards model was used, with stratification for stage and sex, and a penalized spline with 4 degrees of freedom for age at diagnosis, and changing the relative proportion between paired, sequential stages.

Symptoms

- Cancer specific \rightarrow advanced PC
- Early symptoms \rightarrow uncommon, unspecific
- PC relatively rare → Who to Screen
- Biomarkers
- Imaging

- Symptoms
 - Cancer specific \rightarrow advanced PC
 - Early symptoms \rightarrow uncommon, unspecific
- PC relatively rare \rightarrow Who to Screen
- Biomarkers
- Imaging

Restricted to subject at high risk of having or developing sporadic PC


- Late onset (>50 yrs) DM
 - Recent onset → 25% of PC subjects develop DM 6-36 months prior diagnosis (window for early diagnosis)
 - 50 67% PC subjects have DM
 - Paramount importance DD Pc induced Type 3c DM vs
 Type 2 DM (less 1% of subjects with late onset of DM will have PC)

- Symptoms
 - Cancer specific \rightarrow advanced PC
 - Early symptoms \rightarrow uncommon, unspecific
- PC relatively rare → Who to Screen
- Biomarkers
- Imaging

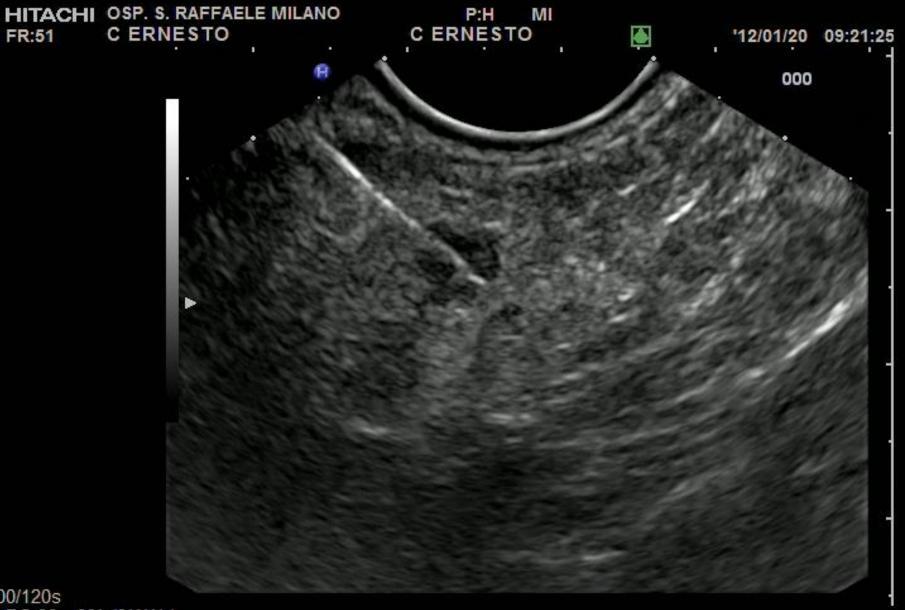
IN GASTROENTEROLOGIA

The Ideal Biomarker

- Universally present in preinvasive cancer (PanIN-3) and curable-stage PC and absent in patients without neoplasia
- Practical, noninvasive, inexpensive, widely accessible highly sensitive and specific
- Ca19/9 the only clinical available biomarker is
 - insensitive for early invasive PC
 - Doesn't identify high-grade PanIN

Screening Biomarkers

- Stool DNA
 - Potential possibility of «one test fits all» GI tumors
- Saliva
 - Salivary extracellular RNA biomarkers to discriminate PC from non-PC patients
- Circulating Tumor Cells
 - The dissemination of tumor cells in the circulation in PC is thought to occur very early in the disease progression


Mucins

- Blood based biomarkers
- EUS-FNA specimens
- Autoantibodies against specific tumor associated mucin antigens
- Pancreatic juice
 - EUS-FNA based

- Currently Early PC is not detected by routine cross-sectional imaging
 - MDHCT is insensitive to detect
 - ✓ PanIN-3
 - ✓ Minute/small invasive PC
 - MRI + MRCP and EUS
 - ✓ EUS and MRI are better than CT for the detection of small, predominantly cystic, pancreatic lesions, with good to excellent concordance of lesion number, size and location between EUS and MRI/MRCP. EUS, MRI/MRCP and CT identified pancreatic lesions in 42.6%, 33.3% and 11% of screened HRIs, respectively.

000/120s BG:22 60/+/3/4/1/-/-3870UTK dTHI-G Endoscope

35mm

Imaging

- EUS+FNA

- ✓ is the most sensitive tool and the adjunct of FNA increase specificity
- ✓ Enhancements to EUS (elastography or CEUS) or ancillary methods (pancreatic juice biomarkers) needed to improve DD true early lesions from false positive lesions (age or environmental related)
- ✓ Technology for molecular imaging during EUS could improve in the future the EUS-FNA performance

Molecular Imaging

- ✓ Allows visualization of biological processes at molecular level
- \checkmark Early detection and localization
- ✓ Identification of metastatic disease in "surgical" candidates

- Imaging modalities that can define aspect of «normal» pancreas in older subjects with lifetime exposure to smoking, alcool, obesity, diabetes
- Identification of high-risk lesions to guide EUS-FNA
 - Noninvasive molecular imaging methods
 - New EUS technologies (CEUS, elastography, digital image analysis, enhanced resolution for B-Mode imaging)
 - New pancreatic juice biomarkers

Conclusions

The development of effective methods for early detection requires committed collaboration of numerous scientific and clinical disciplines.

Detection of PC prior to invasion is a primary goal

The long, presymptomatic dwell time at both precancerous and early T1 cancer stages may actually provide a relatively wide window of opportunity for screening detection.

The ideal markers would reflect the molecular alterations that accompany the evolution frompancreatic precancer to preinvasive cancer and that result from exfoliated cells or secreted markers

Imaging techniques (MRI + EUS) are also essential to confirm presence of early PC in subjects in whom biomarker studies predict their presence.