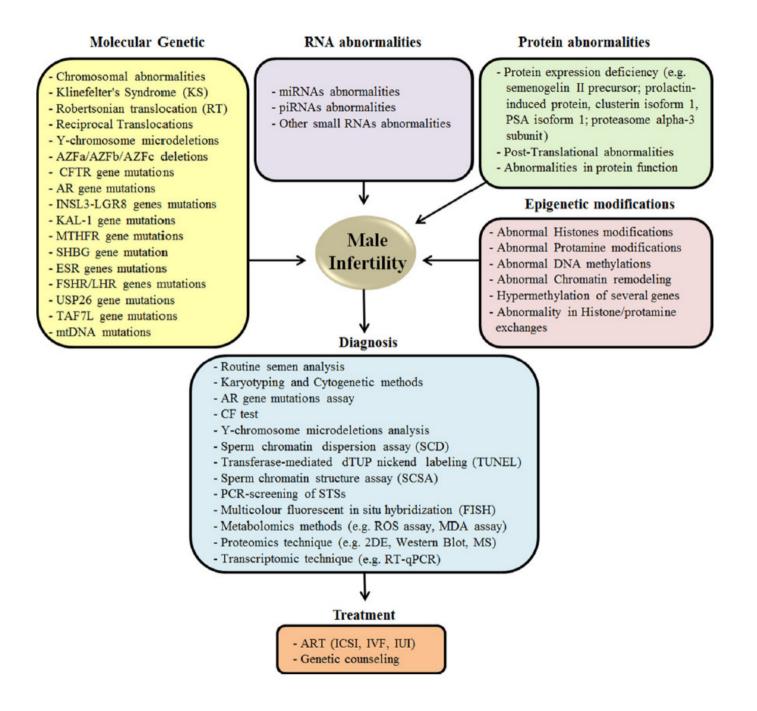


XXXVIII SABATO DELL'ANDROLOGIA

COLLOQUI IN PMA TRA GINECOLOGI, BIOLOGI E ANDROLOGI

17 FEBBRAIO 2018 PADERNO DUGNANO


Clinica San Carlo - Via Ospedale, 21 (Auditorium del Nuovo Ospedale)

I SESSIONE - L'ANDROLOGO PARLA AL GINECOLOGO E AL BIOLOGO MODERATORI: G. Franco, M. Grasso

10:00 Il ruolo del genoma maschile nella riuscita della PMA E. Caroppo

Dipartimento Materno-Infantile U.O. Fisiopatologia della Riproduzione Umana e P.M.A. PTA «F Jaia», Conversano (BA)

Prevalence of genetic abnormalities in infertile men

A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART)

Eisa Tahmasbpour • Dheepa Balasubramanian • Ashok Agarwal

Genetic abnormalities	Phenotype	Prevalence (%)	References
Chromosome aberrations	Azoospermia to normospermia	2–10 %	[1]
Numerical disorders			
Klinefelter's syndrome	Azoospermia to severe oligospermia	5-10 % azoospermia 2-5 % oligospermia	[1]
Other sex chromosomes	Azoospermia to normospermia	0.1–0.2 %	[20]
Structural disorders			
Robertsonian translocations	Azoospermia to severe oligospermia	0.5-1 %	[20]
Reciprocal translocations	Azoospermia to severe oligospermia	0.5-1 %	[32]
Y chromosome deletions and microdeletions	Azoospermia to severe oligospermia	5-10 %	[226]
AZFa	Azoospermia to SCOS	0.5-1 %	[34]
AZFb	Azoospermic to arrest of spermatogenesis	0.5-1 %	[34]
AZFc	Azoospermia to severe oligospermia	3-7 %	[20]
AZFb,c	SCOS to arrest of spermatogenesis	0.5-1 %	[34]
Partial deletions of AZFc	Azoospermia to normozoospermia	3-5 %	[34]
Genetic mutations			
CFTR	Obstructive azoospermia	4-5 %	[20]
AR	Azoospermia to oligospermia	2-3 %	[82]
KAL-1	Hypogonadism hypogonadotropic	5 %	[18]
INSL3-LGR8	Cryptorchidism	4-5 %	[227]

Table 2 Prevalence and phenotype of the most common genetic anomalies associated with male infertility

J Assist Reprod Genet 2014; 31: 115-37

Chromosomal abnormalities in 1663 infertile men with azoospermia: the clinical consequences Donker RB, Vioeberghs V, Groen H, Tournaye H, Van Ravenswaaij-Arts CMA, Land JA. Hum Reprod 2017; 32: 2574-80 (December)

- 1663 pz with azoospermia
- 14,4% with chromosomal abnormalities

	Normogonadotropic (FSH<10)	Hypergonadotropic (FSH>10)
Chromosomal abnormalities	4,9%	20.2%
Klinefelter		83%

	Number of pz needed to be screened to identify one man with chromosomal abnormalities
Increased risk of absent spermatogenesis	72
Prevent one miscarriage	370-739
Prevent one child with congenital malformations	4751-23757

Chromosomal polymorphisms and IVF/ICSI outcome

^aInfertile couples with male chromosomal polymorphisms only. ^bInfertile couples with female chromosomal polymorphisms only. ^cInfertile couples without chromosomal polymorphisms. Effect of chromosomal polymorphisms of different genders on fertilization rate of fresh IVF-ICSI embryo transfer cycles

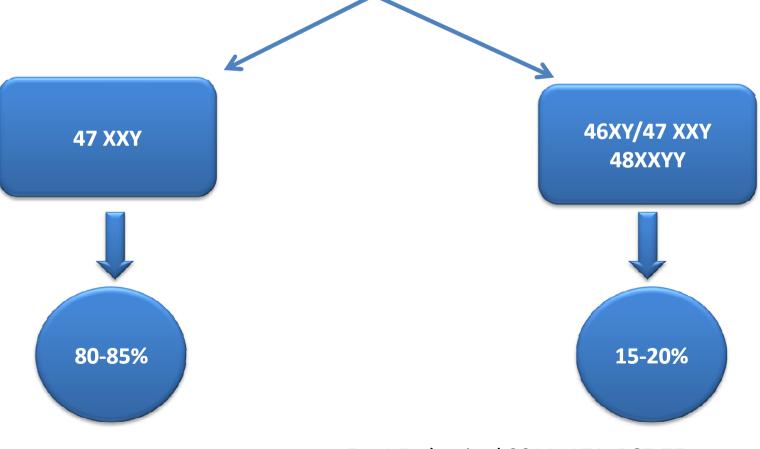

Ji Liang, Yongsheng Zhang, Yang Yu, Wentao Sun, Jili Jing, Ruizhi Liu

Table 3 Comparison of the outcomes of fresh IVF-ICSI-embryo transfer cycles among three groups.

Outcomes n (%)	Group 1ª	Group 2 ^b	Group 3 ^c	P-value
Fertilization rate (fertilized oocytes/inseminated oocytes)	106/187 (56.68) ^h	142/182 (78.02)	198/276 (71.74)	<0.001 ^b
Cleavage rate (cleaved zygotes/fertilized oocytes)	102/106 (96.23)	135/142 (95.07) ⁱ	197/198 (99.49) ⁱ	0.013 ^d
Good quality embryo rate (good quality embryos/cleaved zygotes)	35/102 (34.31)	58/135 (42.96)	94/197 (47.72)	NS ^e
Pregnancy rate (positive beta HCG/fresh embryo transfer cycles)	8/20 (40.00)	12/17 (70.59)	10/19 (52.63)	NS ^e
Biochemical pregnancy rate (biochemical pregnancies/positive pregnancies)	1/8 (12.50)	1/12 (8.33)	3/10 (30.00)	NS ^e
Clinical pregnancy rate (clinical pregnancies/fresh embryo transfer cycles)	7/20 (35.00)	11/17 (64.71)	7/19 (36.84)	NS ^e
Early miscarriage rate (early miscarriages/clinical pregnancies)	1/7 (14.29)	1/11 (9.09)	1/7 (14.29)	NS ^d
Ongoing pregnancy rate (ongoing pregnancies/fresh embryo transfer cycles)	6/20 (30.00) ^f	10/17 (58.82) ^g	4/19 (26.32)	NS ^d
Live birth rate (live births/fresh embryo transfer cycles)	5/20 (25.00)	9/17 (52.94)	5/19 (26.32)	NS ^d

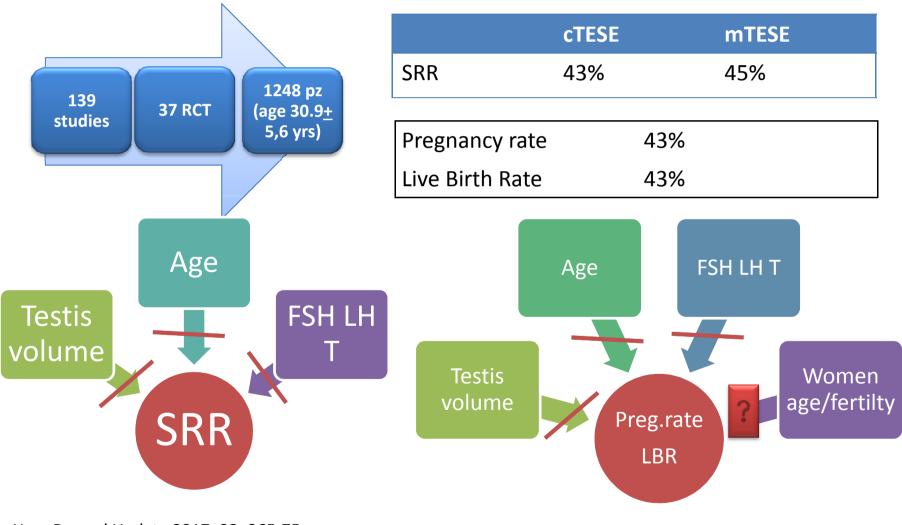
Klinefelter syndrome

• 152-223/100.000 soggetti di sesso maschile

Eur J Endocrinol 2014; 171: R67-77

Euploid sperm in patients with KS!

Human Reproduction, Vol.26, No.12 pp. 3486–3493, 2011 Advanced Access publication on October 20, 2011 doi:10.1093/humrep/der351


human reproduction ORIGINAL ARTICLE Reproductive genetics Hidden mosaicism in patients with Klinefelter's syndrome: implications for genetic reproductive counselling[†]

L. Garcia-Quevedo $^{I},$ J. Blanco $^{I},$ Z. Sarrate $^{I},$ V. Català $^{2},$ L. Bassas $^{3},$ and F. Vidal I,*

Sperm recovery and ICSI outcomes in Klinefelter syndrome: results from a systematic review and meta-analysis

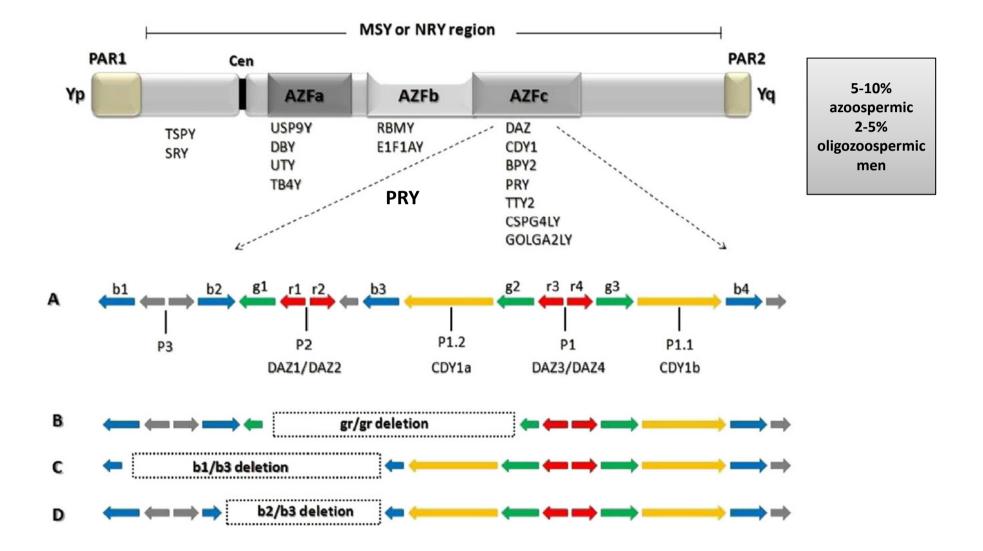
Hum Reprod Update 2017; 23: 265-75

Microtese seems to perform better than tese in KS patients

Klinefelter syndrome: an argument for early aggressive hormonal and fertility management

Akanksha Mehta, M.D., and Darius A. Paduch, M.D., Ph.D. Department of Urology, Weill Cornell Medical College, New York, New York

Fertility and Sterility® Vol. 98, No. 2, August 2012

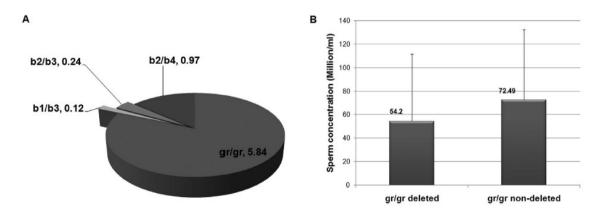

	TESE	mTESE	Ρ
SRR	88/212 (41.5%)	150/261 (57.4%)	0.0005

Authors	Tecnique	Sample size	SSR	ICSI outcome
Tournaye 1997	TESE	15	47%	Not reported
Friedler 2001	TESE	12	42%	6 babies (2 twins)
Levron 2000	TESE	20	40%	1 triplet, 1 twins, 2 singletons
Madgar 2002	TESE	20	45%	Not reported
Westlander 2003	TESE	19	21%	2 pregnancies
Sao 2004	TESE	25	16%	Fert rate 50%
Vernaeve 2004	TESE	50	48%	Not reported
Okada 2005	TESE	51	51%	Not reported
Okada 2005	mTESE	10	60%	3 singletons
Schiff 2005	mTESE	42	69%	18 pregnancies, 21 live births
Emre Bakiricioglu 2006	mTESE	74	57%	Not reported
Kyono 2007	mTESE	17	35%	6 singletons 1 twins
Koga 2007	mTESE	26	50%	Not reported
Ramasamy 2009	mTESE	68	66%	LBR 41%
Selice 2010	mTESE	24	38%	Not reported

Role of age and testosterone level on SSR in KS

- Higher testosterone level correlates with higher sperm retrieval rates (TESE) at least in adolescent KS patients [JCEM 2015; 100: 961-67]
- When Leydig cell function is at its best (late pubertal-young adulthood KS) 50% chance of retrieving sperm with mTESE exists
- Sperm in the ejaculate are associated with T levels > 7 nmol/l in late pubertal and young adult KS [Andrology 2016; 4: 1178-86]
- Mean age was lower and T levels were higher among KS men (N=134) with SSR compared to those with failed SR [Urology 2014; 83: 107-10]
- Younger age correlated with SSR in KS men [J Urol 2014; 191: 175-8; J Urol 2013; 189: 638-42]

Y chromosome microdeletions


Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses

SCIENTIFIC REPORTS | 6:19798 (2016).

Sandeep Kumar Bansal¹, Deepika Jaiswal², Nishi Gupta¹, Kiran Singh², Rima Dada³, Satya Narayan Sankhwar⁴, Gopal Gupta¹ & Singh Rajender¹

		Partial deletions distribution (%)			Complete AFZc deletion (%)	
Subjects	N	gr/gr	b1/b3	b2/b3	Total (%)	b2/b4
All cases	822	48 (5.84)	1 (0.12)	2 (0.24)	51 (6.20)	8 (0.97)
Azoospermic	251	3 (1.20)	Nil	1 (0.40)	4 (1.59)	4 (1.59)
Oligozoospermic	105	7 (6.67)	Nil	Nil	7 (6.67)	Nil
Asthenozoospermic	34	Nil	Nil	Nil	Nil	Nil
Normozoospermic	203	18 (8.87)	Nil	Nil	18 (8.87)	Nil
Uncategorized idiopathic infertile	229	20 (8.73)	1 (0.44)	1 (0.44)	22 (9.61)	4 (1.75)
Fertile controls	225	2 (0.89)	Nil	1 (0.44)	3 (1.33)	Nil

Figure 1. Distribution and the effect of Y-partial deletions: (A) Pie chart showing the frequencies (%) of the AZFc partial deletions in the cases (n = 822), (B) Cohort analysis showing sperm count between groups with and without gr/gr deletions.

Outcomes of intracytoplasmic sperm injection in oligozoospermic men with Y chromosome AZFb or AZFc microdeletions

Andrologia 2017, 49, e12602;

X.-Y. Liu¹, R.-X. Wang¹, Y. Fu², L.-L. Luo¹, W. Guo¹ & R.-Z. Liu¹

Table 2 AZF microdeletion and control group data

Variables	AZF microdeletion group	Control group	t	Ρ
Female's age (year)	27.69 ± 4.64	29.85 ± 2.85	-1.872	0.069
Female's BMI	22.81 ± 3.39	22.20 ± 2.81	0.635	0.529
Male's age (year)	29.37 ± 4.06	31.35 ± 3.53	-1.659	0.105
Infertility duration (year)	4.50 ± 3.18	3.29 ± 1.84	1.566	0.125
Number of OR	12.5 ± 9.77	12.92 ± 6.79	-0.166	0.869
MII oocyte	10.19 ± 8.57	12.23 ± 6.56	-0.872	0.388

Values are mean \pm SD (95% CI).

OR, oocytes retrieved; BMI, body mass index; AZF, azoospermia factor; MII, metaphase II.

 Table 3 Azoospermia factor (AZF) microdeletion and control group semen parameters

Variables	AZF microdeletion group	Control group	t/Z	Ρ
Semen volume	3.30 ± 1.63	2.23 ± 1.49	2.185	0.035
Sperm motility a + b (%) ^a	19.06	23.00	-1.026	0.305

Values are mean \pm SD (95% CI).

^aMann–Whitney U-test was used.

 Table 4 Clinical outcomes in the azoospermia factor (AZF) microdeletion and control groups

Variables	AZF microdeletion group <i>n</i> (%)	Control group n (%)	X ²	Р
Fertilised oocyte rate ^a	104/200 (52.00)	278/336 (82.74)	57.850	0.000
Cleaved embryo rate ^b	95/104 (91.35)	241/278 (86.69)	1.549	0.213
High-grade embryo rate	49/95 (51.58)	129/241 (53.53)	0.104	0.747
Blastocyst formation rate	18/41 (43.90)	70/124 (56.45)	1.950	0.163
Embryo implantation rate ^c	8/24 (33.33)	20/53 (37.74)	0.138	0.710
Clinical pregnancy rate ^d	6/25 (24.00)	13/30 (43.33)	2.254	0.133
Delivery rate Birth defect rate	6/24 (25.00) 0	13/53 (24.53) 0	0.002	0.965

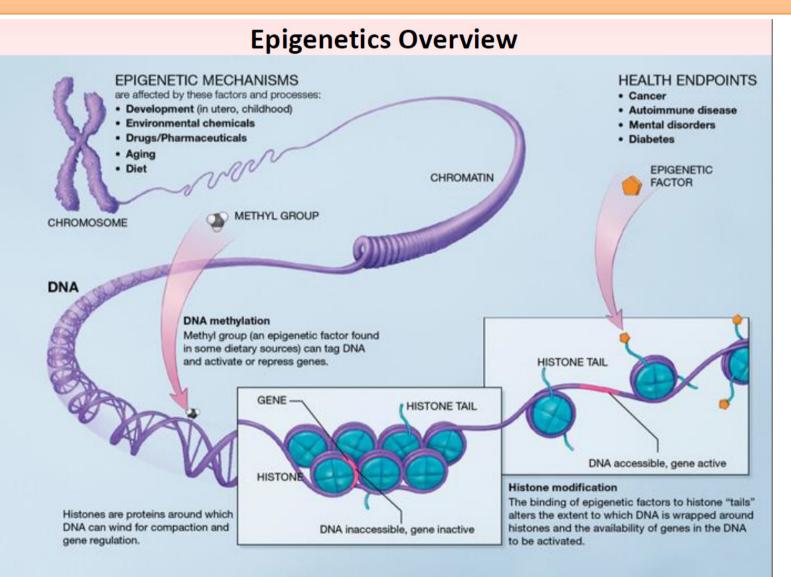
Microdissection TESE is superior to conventional TESE in patients with nonobstructive azoospermia caused by Y chromosome microdeletions SchwarzerJU et al Andrologia 2016; 48: 402-5

• 25 male patients with AZF microdeletions

	TESE	MicroTESE
Ν	11	14
Sperm retrieval	25%	67%

• Overall pregnancy rate: 33%

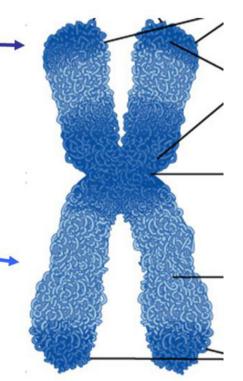
In summary...


Review of Azoospermia

Matthew Wosnitzer^{1,*}, Marc Goldstein², and Matthew P Hardy^{1,3,4}

Table 1. Microdissection TESE outcomes at Cornell

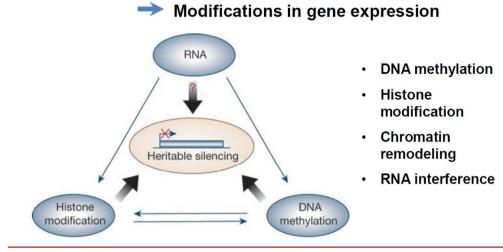
Condition	Overall sperm retrieval rate	Pregnancy rate
	per micro-TESE cycle	
Cryptorchidism	64%	50%
Post-chemotherapy azoospermia	48%	40%
KS (classic and mosaic)	65%	40%
AZFc deletion (Y chromosome microdeletion)	72%	46%
Uniform Maturation Arrest	50%	29%
Sertoli cell only	44%	46%

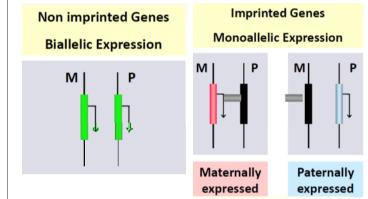

Epigenetics

Genome and epigenome

Chromosome Parts:

- Heterochromatin:
 - More condensed
 - Silenced genes (methylated)
 - Gene poor (high AT content)
 - Stains darker
- Euchromatin:
 - Less condensed
 - Gene expressing
 - Gene rich (higher GC content)
 - Stains lighter


Epigenetic marks

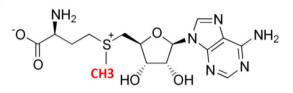

- Epigenetic marks are a fundamental component of the mechanisms that functionally interpret DNA sequence. These marks contribute to the establishment and maintenance of specialized gene expression patterns that determine cell identity.
- Epigenetically reinforced transcriptional states can be propagated through cell division, acting as a long-term marker of developmental origin during lineage specification.
- DNA methylation is an epigenetic mark that can be established *de novo*, maintained through cell division and be interpreted by transcription machinery and DNA-binding proteins. It is a repressive mark that characterizes heterochromatin in mammalian cells, and when found at gene promoters generally suppresses transcription

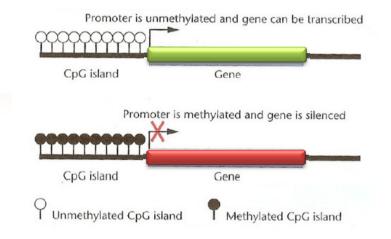
Epigenetic marks

Epigenesis:

Changes in the genetic information not involving DNA sequence

Epigenetic Mark/Imprint

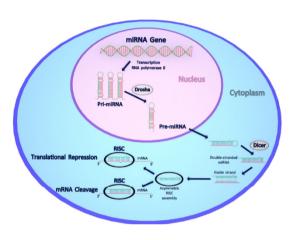

Genomic imprinting implies a differential marking of the two parental genomes


- 1. Apposed during gametogenesis and early embryogenesis
- 2. Specific
- 3. Stable and transmissible
- 4. Reversible, imprint resetting

- >80 imprinted genes (0.1%-1% of all genes)
- Key role in embryonic growth and placental function, cognition and maternal behavior
- Maternal and paternal alleles carry different epigenetic modifications ("imprints")
- Defective imprinting involved in carcinogenesis and in human genetic diseases
 - Angelman syndrome
 - Prader-Willi syndrome
 - Beckwith-Wiedemann syndrome

Methylation

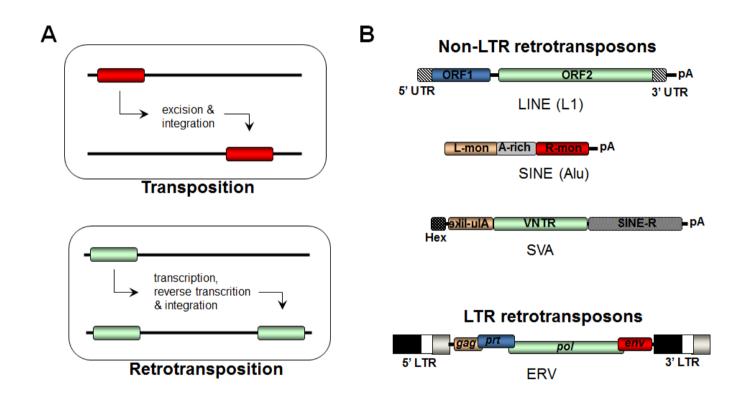
- Biochemical process
- Intermediate metabolism
- Universal effector in DNA and histone methylation
 - SAM (S Adenosyl methionine)



- 70% to 80% of CpG sites are methylated in humans
- 20% remaining are located in clusters: CpG islands
- CpG islands represent 1%–2% of the genome and contain 50% of unmethylated sites

 Estimated 29,000 CpG islands in the genome are frequently found in the promoter regions of human genes either tissuespecific or "housekeeping"

Short non-coding RNAs


Short non-coding RNAs are a class of functional RNA molecules that regulate gene expression at the posttranscriptional level via epigenetic mechanisms. These RNA molecules are shorter than 30 nucleotides, and they do not code for a particular protein. Short noncoding RNAs can be classified into three main groups called microRNAs (miRNAs), small-interfering RNAs (siRNAs), and piwiinteracting RNAs (piRNAs).

- miRNAs and endo-siRNAs are abundantly expressed in male germ cells throughout spermatogenesis, whereas piRNAs are only present in spermatocytes at the pachytene stage and in round spermatids. 221 miRNAs have been found in normozoospermic men
- Germ-cell specific deletion of Dicer1 in mice models has led to complete male infertility due to alterations in meiotic progression, increased spermatocyte apoptosis, and failure of haploid male germ cell differentiation
- when compared to ones from Dicer knockouts, the testes from Drosha knockouts were more severely disrupted in terms of spermatogenesis

Sperm non-coding RNAs

- sperm cells contain a large repertoire of small non-coding RNAs.
- male germ cells express and require the activity of microRNAs (Hayashi et al., 2008; Maatouk et al., 2008; Romero et al., 2011; Wu et al., 2012) and many can still be detected in mature sperm (Amanai et al., 2006; Krawetz et al., 2011; Hammoud et al., 2014)
- inhibition, in the zygote, of sperm-delivered microRNAs leads to developmental delays (Liu et al., 2012; Hammoud et al., 2014)
- traumatic stress in early life of males alters the sperm microRNA (and PIWI- interacting RNA) profile and behavioral and metabolic responses in the offspring (Gapp et al., 2014)
- Male germ cells express PIWI-interacting RNAs (piRNAs; Aravin et al., 2006; Girard et al., 2006; Grivna et al., 2006; Lau et al., 2006;Watanabe et al., 2006); their most deeply conserved function is protection of the germline genome from transposons (reviewed in O'Donnell and Boeke, 2007; Thomson and Lin, 2009; Siomi et al., 2011). piRNAs target transposon transcripts for degradation and silencing when DNA methylation is nearly completely depleted during germcell development

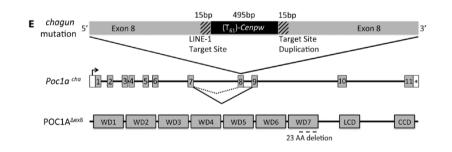
Retrotransposons

LINE=long interspersed nuclear elements SINE= short interspersed nuclear elements LTR= long terminal repeats SVA= SINE-VNTR-Alu elements

Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa

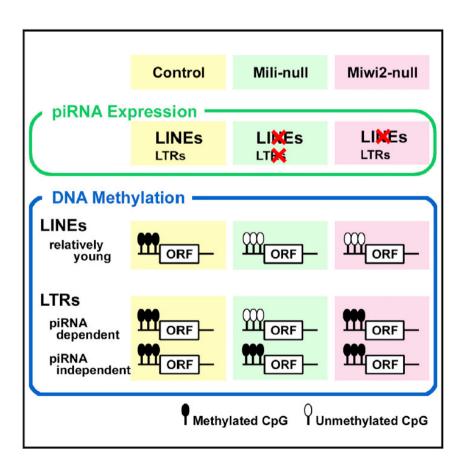
Leandros Lazaros, Ph.D.,^{a,b,c} Chrysoula Kitsou, Ph.D.,^a Charilaos Kostoulas, B.Sc.,^a Sofia Bellou, Ph.D.,^d Elissavet Hatzi, Ph.D.,^b Paris Ladias, B.Sc.,^a Theodoros Stefos, M.D., Ph.D.,^b Sofia Markoula, Ph.D.,^a Vasiliki Galani, Ph.D.,^e Georgios Vartholomatos, Ph.D.,^f Theodore Tzavaras, Ph.D.,^g and Ioannis Georgiou, Ph.D.^{a,b}

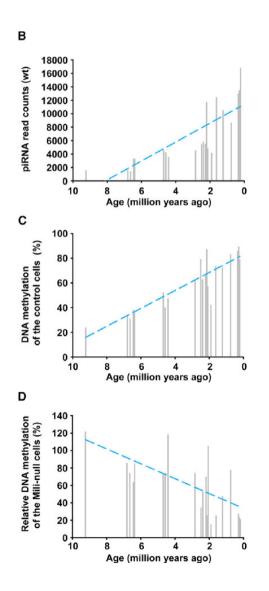
Fertility and Sterility® Vol. 107, No. 3, March 2017


LINE-1, HERV-K10, and SVA Retrotransposons Are Transcriptionally Active in Human Spermatozoa

LINE-1 Mediated Insertion into *Poc1a* (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice

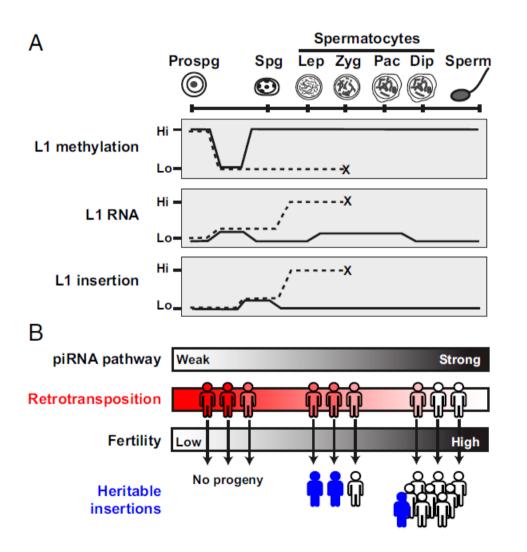
Krista A. Geister¹⁰, Michelle L. Brinkmeier², Leonard Y. Cheung², Jennifer Wendt³, Melissa J. Oatley⁴, Daniel L. Burgess³, Kenneth M. Kozloff⁵, James D. Cavalcoli⁶, Jon M. Oatley⁴, Sally A. Camper^{1,2}*


PLOS GENETICS October 23, 2015



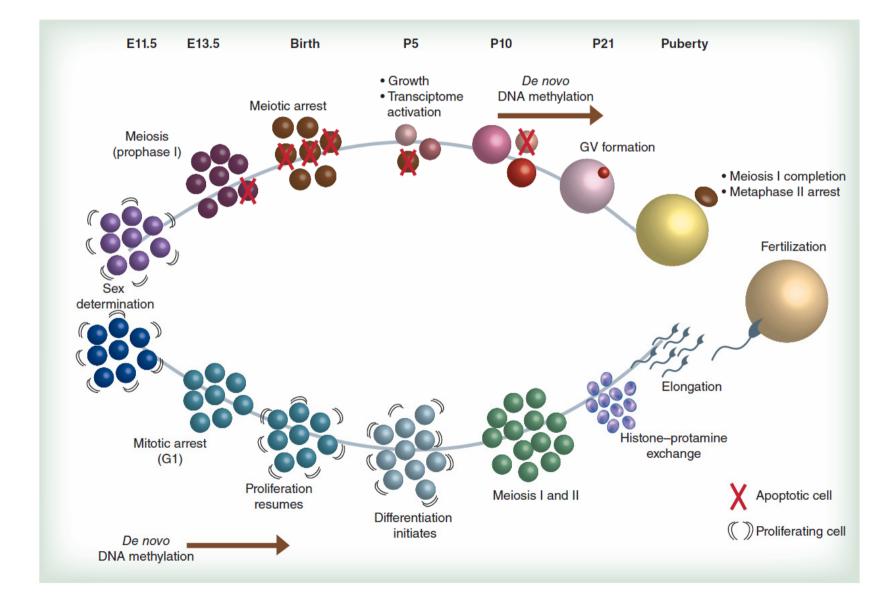
Comprehensive DNA Methylation Analysis of Retrotransposons in Male Germ Cells

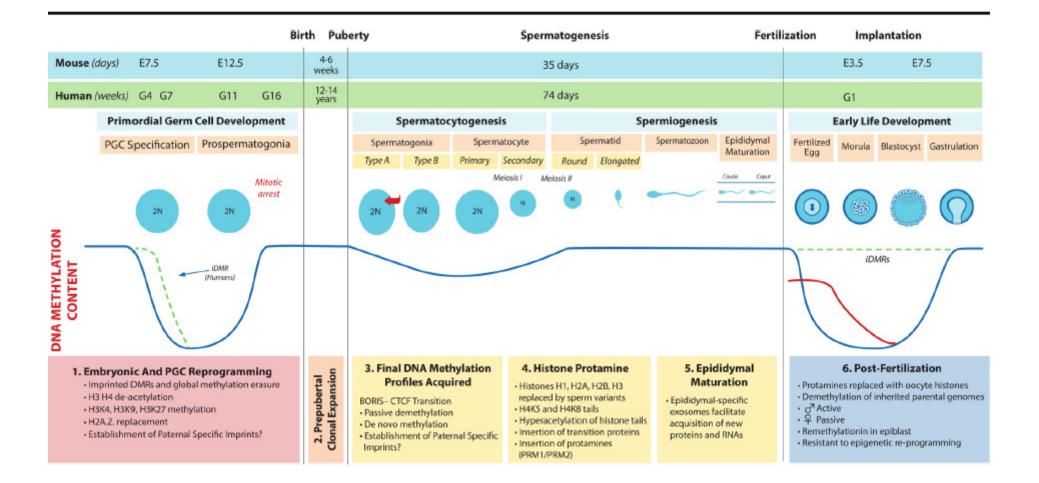
Ippei Nagamori,¹ Hisato Kobayashi,² Yusuke Shiromoto,^{1,5} Toru Nishimura,³ Satomi Kuramochi-Miyagawa,^{1,5} Tomohiro Kono,⁴ and Toru Nakano^{1,3,5,*}



Cell Reports 2015 12, 1541–1547

Intact piRNA pathway prevents L1 mobilization in male meiosis PNAS | Published online June 19, 2017 | E5635-E5644


Simon J. Newkirk^{a,b}, Suman Lee^a, Fiorella C. Grandi^{b,1}, Valeriya Gaysinskaya^c, James M. Rosser^{b,2}, Nicole Vanden Berg^a, Cathryn A. Hogarth^b, Maria C. N. Marchetto^d, Alysson R. Muotri^{d,3}, Michael D. Griswold^b, Ping Ye^{e,f}, Alex Bortvin^c, Fred H. Gage^{d,4}, Jef D. Boeke^g, and Wenfeng An^{a,4}


Significance

Retrotransposons make up the bulk of the human genome and, if unleashed, threaten the genomic integrity through DNA damage and insertional mutagenesis. In germ cells, an intact PIWI-interacting RNA pathway is essential for suppressing the expression of L1 retrotransposons. Deficiencies in the PIWIinteracting RNA pathway have dire consequences because mutant males are invariably sterile. To address the role of retrotransposon activation in these mutants, we developed an L1 reporter transgenic mouse. This mouse model allowed us to detect significant and stage-specific increases of new insertions in mutant germ cells, to draw attention to the importance of other L1-related activities for germ-cell health, and to predict the timing and origin of heritable L1 insertions in the human population.

DNA methylation timeline in the human male and female

Windows of epigenetic instability

PERSPECTIVES

Developmental origins of epigenetic transgenerational inheritance

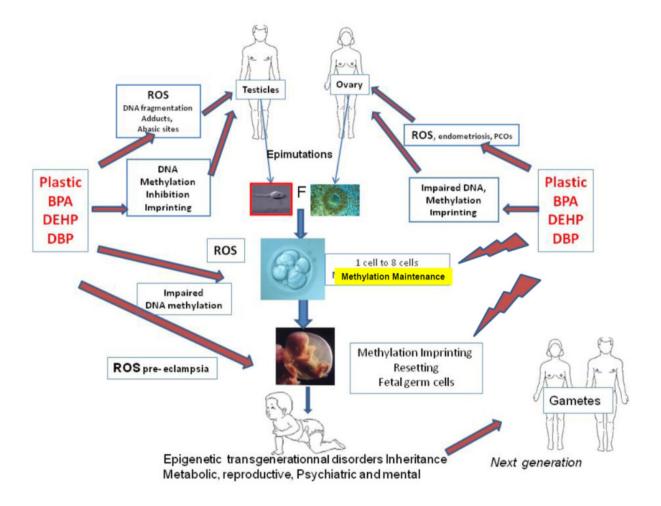
Mark A. Hanson¹ and Michael K. Skinner^{2,*}

Environmental Epigenetics, 2016, 1–9

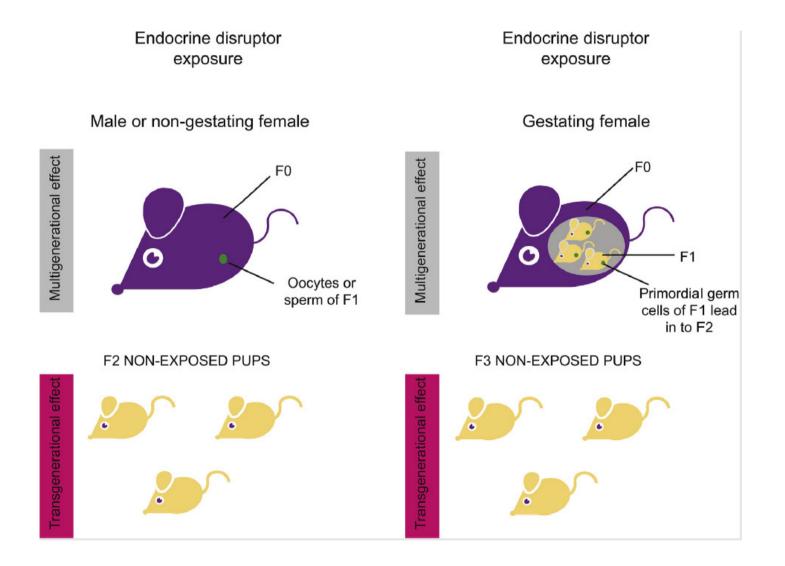
Table 1: exposure induced epigenetic transgenerational inheritance

Toxicants	Species	Generation	References
Vinclozolin (agricultural fungicide)	Rat and mouse	F4	[5, 9, 10]
Methoxychlor (agricultural pesticide)	Rat	F4	[5, 11]
TCDD/dioxin (industrial contaminant)	Rat, mouse, fish	F3	[12, 13, 40]
Plastics (bisphenol-A, phthalate-DEHP and DBP)	Rat	F3	[6, 14, 15]
Jet fuel [JP8] (hydrocarbon mixture)	Rat	F3	[47]
Permethrin and DEET pesticide and insect repellent	Rat	F3	[48]
DDT (pesticide)	Rat	F4	[16]
Bisphenol A (BPA) (plastic toxicant)	Rat, mouse, fish	F3	[49, 50, 98]
Phthalates (plastic toxicant)	Rat	F3	[17]
Tributyltin (industrial toxicant)	Rat	F3	[18]
Nutrition			
Folate (nutrition)	Mouse		[25]
High fat diet (nutrition)	Mouse and rat	F2, F3	[23, 24]
Caloric restriction (nutrition)	Human, rat, mouse, pig, worm, flies	F2, F3	[19-22, 36, 37, 39, 42]
Other types exposures			
Temperature and drought (plant flowering and health)	Plant	F2, F3	[26-29]
Stress (behavioral)	Mouse, rat, human	F2, F3	[30, 31, 44-46]
Smoking (health)	Human	F2, F3	[32, 33]
Nicotine (health)	Rat	F3	[34]
Alcohol (health)	Rat	F3	[35]

ENVIRONMENTAL

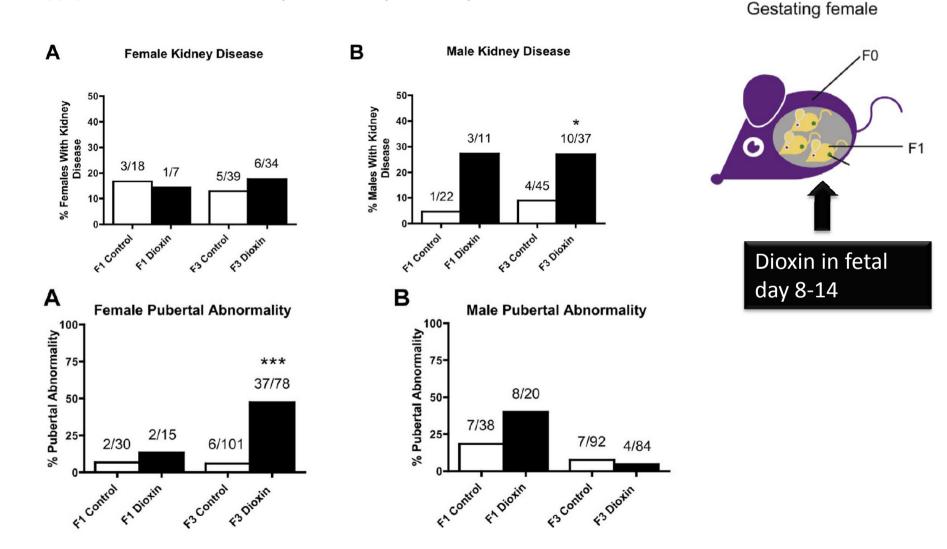

Table 2: sites of action and phenotypes of environmental factors

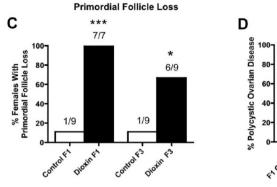
Site of action	Biological response and toxicology
Somatic cells	Allows tissue-specific toxicology and critical for adult onset disease in the individual exposed but not capable of transmitting a transgenerational phenotype.
Germ cells	Allows transmission between generations and in the absence of direct exposure to promote a transge- nerational phenotype.

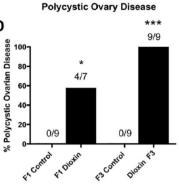

Table 3: transgenerational versus multigenerational phenotypes

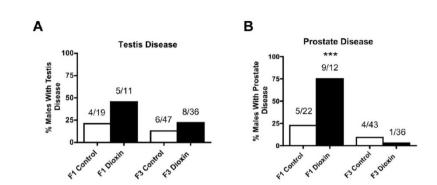
Phenotype	Exposure	Definition
Multigenerational	Direct	Coincident direct exposure of multiple generations to an environmental factor promoting alterations in the multiple generations exposed.
Transgenerational	None, except the initial generation	After the initial exposure, the transgenerational phenotype is transmitted through the germ line in the absence of direct exposure.

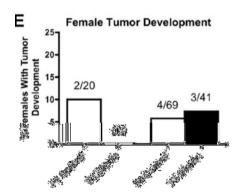
Environmental-induced epigenetic alterations

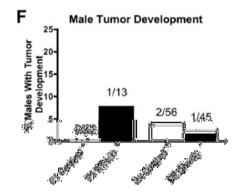

Transgenerational epigenetic inheritance

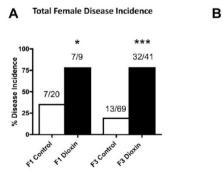


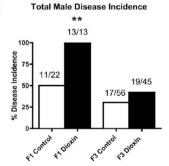

Dioxin (TCDD) Induces Epigenetic Transgenerational Inheritance of Adult Onset Disease and Sperm Epimutations

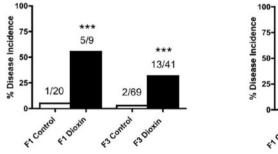

Mohan Manikkam, Rebecca Tracey, Carlos Guerrero-Bosagna, Michael K. Skinner*

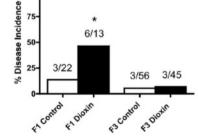

PLOS ONE September 2012 | Volume 7 | Issue 9 | e46249







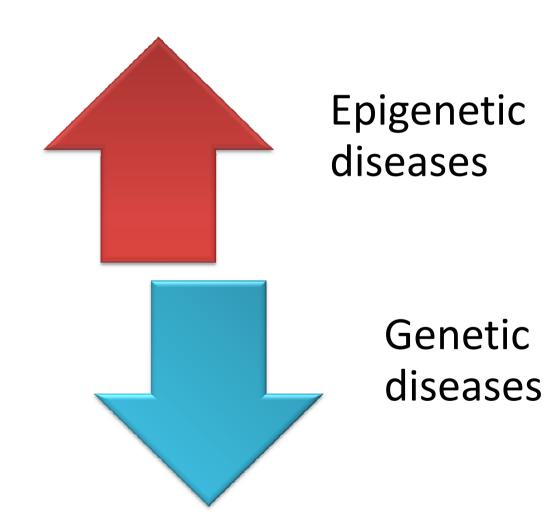




Genetic & epigenetic mechanisms involved in epigenetic transgenerational inheritance

RESEARCH ARTICLE

Tertiary Epimutations – A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability

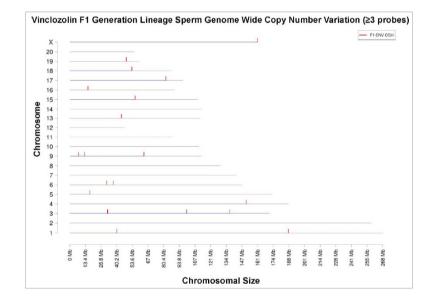

John R. McCarrey¹*, Jake D. Lehle¹, Seetha S. Raju¹, Yufeng Wang¹, Eric E. Nilsson², Michael K. Skinner²

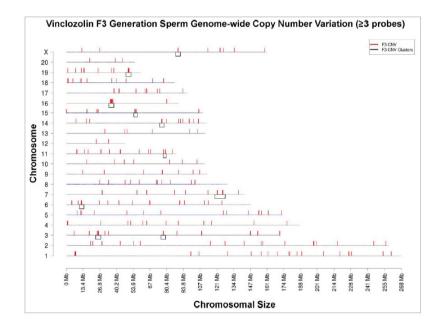
PLOS ONE December 19, 2016

Table 4. Transmission of Genetic and Epigenetic Defects.

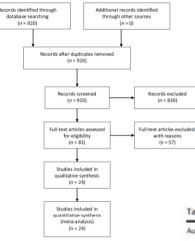
Type of	Initial Manifestation		Mode of	
Defect	Disruption ¹	of Disruption ²	Transmission	
Genetic Mutation	Genome	Genome	Genetic	
Primary Epimutation	Epigenome	Epigenome	Epigenetic	
Secondary Epimutation	Genome	Genome & Epigenome	Genetic or Epigenetic	
Tertiary Epimutation	Epigenome	Epigenome & Genome	Epigenetic or Genetic	

Trends of genetic and epigenetic diseases over time


Epigenetic transgenerational inheritance and male infertility



Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations


Michael K Skinner*, Carlos Guerrero-Bosagna, and M Muksitul Haque

Epigenetics 10:8, 762-771; August 2015;

Impairment of sperm DNA methylation in male infertility

"The main limitation of our study is as a result of the high heterogeneity imprinted genes"

Table 1 Population characteristic and imprinted genes evaluated in each study included in the meta-analysis

Author	Journal	Year	Imprinted genes	Inclusion criteria	Study group (n)	Age (years)	Sperm count (millions/mL)	Control group (n)	Age (years)	Sperm count (millions/mL)
Marques	Lancet	2004	MEST, H19	Oligozoospermia	96	NA	(range: 5.00-20.00)	27	NA	(range: >20.00)
Marques	Mol Hum Reprod	2008	MEST, H19, LINE-1, CFTC-6	OAT or OT	20	NA	(range: <20.00)	5	NA	(range: >20.00)
Navarro-Costa	Hum reprod	2010	DAZL	OAT	5	39.40 ± 7.23	6.66 ± 2.58	5	NA	NA
Boissonnass	Eur J Hum Res	2010	H19, LINE-1, IGF2, IGF2R, PEG3	OAT and/or teratozoospermia	22	36.60 ± 5.70	15.27 ± 2.20	17	39.2 ± 7.29	83.52 ± 23.12
Hammoud	Fertil & Steril	2010	MEST, H19, LIT1, SNRPN, ZAC	Oligozoospermia	13	NA	NA	7	36.60 ± 5.70	118.90 ± 28.70
Poplinsky	Int Androl	2010	MEST, H19	Idiopathic infertility	69	35.50 ± 3.39	11.55 ± 8.09	33	37.00 ± 8.46	65.00 ± 14.95
Nanassy	Asian J Androl	2011	CREM	Oligozoospermia	20	NA	64.84 ± 17.00	10	34.10 ± 2.40	(range: >20.00)
Minor	Reproduction	2011	MEST, H19, GTL2	Oligozoospermia	18	37.00 ± 5.30	(range: <20.00)	9	32.81 ± 0.88	137.06 ± 7.08
Nanassy	Fertil & Steril	2011	CREM	Oligozoospermia	32	33.00 ± 1.28	7.32 ± 1.12	40	31.85 ± 3.88	101.99 ± 35.63
Sato	Fertil & Steril	2011	H19, PEG3, LIT1, GTL2, ZAC	Oligozoospermia	57	NA	NA	204	NA	NA
El Hajj	Sex Dev	2011	H19, MEST, LINE-1, SNRPN	Idiopathic infertility	106	NA	NA	28	31.40 ± 5.10	97.7 ± 56.5
Camprubi	Epigenetics	2012	H19, SNRPN	Idiopathic infertility	107	36.00 ± 5.50	NA	30	32.50 ± 6.50	113.60 ± 32.10
Ankolkar	Fertil & Steril	2012	H19	Idiopathic infertility	26	NA	61 ± 27.23	26	32.16 ± 3.26	63.31 ± 3.27
Kläver	Andrology	2013	H19, MEST	Idiopathic infertility	37	34.5 ± 7.2	NA	31	26.00 ± 6.15	NA
Li	PlosOne	2013	H19, LINE-1, CFCTC-6, DAZL	Oligozoospermia and/or asthenozoospermia	20	31.25 ± 5.63	5.22 ± 3.33	20	32.22 ± 3.59	115.98 ± 31.12
Montjean	Fertil & Steril	2013	H19, MEST	Oligozoospermia	175	NA	NA	118	38.50 ± 5.30	55.70 ± 33.00
Tian	Biol Reprod	2014	H19, LINE-1, LIT1, BRD-T, MTHFR	Idiopathic infertility	29	31.40 ± 5.10	41.00 ± 56.5	29	34.5 ± 7.2	NA
Botezatu	Reprod Biomed Online	2014	SNRPN. MTHER	Idiopathic infertility	27	35.77 ± 19.65	14.01 ± 24.04	11	NA	132.50 ± 12.81
Richardson	Hum Mol Genet	2014	MEST, RHOX	Idiopathic infertility	95	36.00 ± 9.82	53.00 ± 84.43	45	NA	NA
Laurentino	Hum Mol Genet	2015	H19, MEST, MEG3, KCNQ10T1	Idiopathic infertility	7	35.33 ± 1.70	9.13 ± 1.85	5	NA	NA
Montjean	Andrology	2015	H19, MEST	Oligozoospermia and/or asthenozoospermia	30	38.30 ± 6.00	5.80 ± 3.90	62	35.00 ± 9.96	18.30 ± 29.96
Xu	Andrologia	2016	MEST, H19, LINE-1, GNIAS; FAM50B	Idiopathic infertility	46	31.95 ± 2.21	43.93 ± 3.37	49	33.68 ± 1.58	65.53 ± 10.49
Li	Exp & Therap Med	2016	H19	OAT	15	35.50 ± 8.50	11.80 ± 7.20	15	NA	75 ± 97.30
Dong	Reprod Sci	2016	H19, LINE-1, SNRPN	OAT	48	31.52 ± 3.58	10.90 ± 3.86	50	30.45 ± 9.60	32.22 ± 15.21

OAT, oligoasthenoteratozoospermia; OT, oligoteratozoospermia.

Figure 2 Comparison between fertile and infertile men considering the methylation levels at H19 gene. [Colour figure can be viewed at wileyonlinelibrary.com].

	Infe	rtile me	2n	Ferti	le contr	ols		Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Marques 2004	98.5	3.52	96	99.2	2.8	27	8.8%	-0.70 [-1.97, 0.57]	2004	-	
Margues 2008	68.2	8.94	20	91.8	4.47	5	6.1%	-23.60 [-29.14, -18.06]	2008	•	
Hammound 2010	90.5	2	8	97.5	2	7	8.5%	-7.00 [-9.03, -4.97]	2010		
Poplinsky 2010	89.6	32.6	69	95.9	11.56	33	4.1%	-6.30 [-14.94, 2.34]	2010		
Boissonnass 2010	53	26.3	22	83.7	7.7	17	2.9%	-30.70 [-42.28, -19.12]	2010	←	
Sato 2011	0	0	0	0	0	0		Not estimable	2011		
Minor 2011	82	35	18	99.8	2	9	1.8%	-17.80 [-34.02, -1.58]	2011	·	
El Hajj 2011	92.3	3.5	106	93.1	2.2	28	8.9%	-0.80 [-1.85, 0.25]	2011	-	
Camprubì 2012	88.87	10	107	88.49	10	30	7.2%	0.38 [-3.67, 4.43]	2012		
Ankolkar 2012	62.5	88.6	26	77.7	48.9	26	0.4%	-15.20 [-54.10, 23.70]	2012	• • • •	
Montjean 2013	89.16	10	175	100	10	119	8.3%	-10.84 [-13.17, -8.51]	2013		
Li 2013	32.6	12.5	20	50	4.7	20	5.9%	-17.40 [-23.25, -11.55]	2013		
Klaver 2013	95.53	6.09	37	96.12	1.03	31	8.5%	-0.59 [-2.59, 1.41]	2013	-	
Tian 2014	77.6	21.8	29	87.1	21.8	29	3.0%	-9.50 [-20.72, 1.72]	2014		
Montjean 2015	94.2	16.3	30	100	0.1	62	5.9%	-5.80 [-11.63, 0.03]	2015		
Laurentino 2015	74.9	20.53	7	96.78	0.69	5	1.9%	-21.88 [-37.10, -6.66]	2015	·	
Xu 2016	44.58	2.18	46	47.39	1.73	49	8.9%	-2.81 [-3.60, -2.02]	2016	•	
Dong 2016	80.4	12.74	48	88.51	10.54	50	6.7%	-8.11 [-12.75, -3.47]	2016		
Li 2016	97.3	27.06	15	100	1	15	2.3%	-2.70 [-16.40, 11.00]	2016		
Total (95% CI)			879			562	100.0%	-7.53 [-9.93, -5.14]		•	
Heterogeneity: Tau ²	= 16.52;	Chi ² =	211.50	. df = 1	7 (p < (.00001	1); $ ^2 = 92$	%			+
Test for overall effect										-20 -10 0 10	20
										Infertile men Controls	

Figure 3 Comparison between fertile and infertile men considering the percentage of altered methylation at H19 gene. [Colour figure can be viewed at wileyonlinelibrary.com].

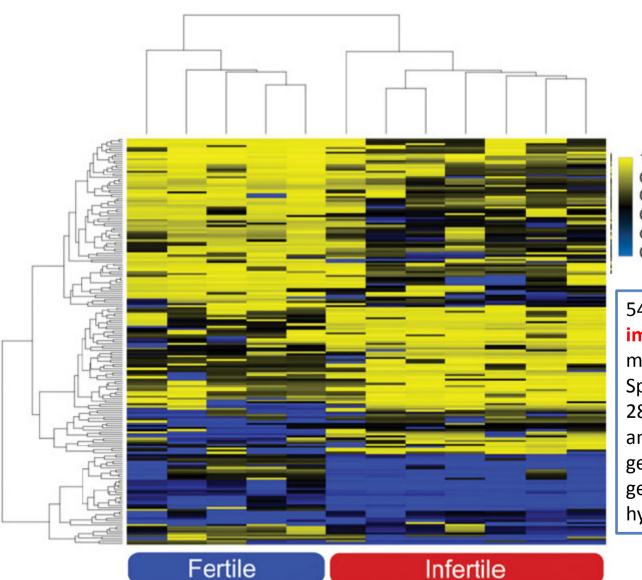
	Infertile	men	Fertile con	ntrols		Risk Ratio			Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H	I, Fixed, 95% CI	
Marques 2004	23	96	0	27	6.3%	13.57 [0.85, 216.38]	2004			
Marques 2008	4	20	1	5	12.9%	1.00 [0.14, 7.10]	2008			
Boissonnass 2010	21	22	0	17	4.5%	33.65 [2.18, 518.66]	2010			
Minor 2011	7	18	0	9	5.3%	7.89 [0.50, 124.54]	2011		· · ·	
Sato 2011	8	57	1	204	3.5%	28.63 [3.66, 224.20]	2011			
Camprubi 2012	13	107	1	30	12.6%	3.64 [0.50, 26.75]	2012			
Montjean 2013	35	175	0	119	4.8%	48.41 [3.00, 781.56]	2013			• •
Li 2013	5	20	0	20	4.0%	11.00 [0.65, 186.62]	2013			
Montjean 2015	5	30	0	62	2.7%	22.35 [1.28, 391.50]	2015		· · · ·	
Dong 2016	25	48	5	50	39.5%	5.21 [2.17, 12.49]	2016			
Li 2016	1	15	0	15	4.0%	3.00 [0.13, 68.26]	2016	-	•	
Total (95% CI)		608		558	100.0%	9.91 [5.55, 17.70]			•	
Total events	147		8							
Heterogeneity: Chi2 =	12.30, df	= 10 ($p = 0.27$; I^2	= 19%				+		
Test for overall effect	: Z = 7.76	(p<0.	00001)				0.01	0.1	1 10	10
								Favours [Con	trols] Favours [Infertile men]	

Figure 4 Comparison between fertile and infertile men considering the methylation levels at MEST gene. [Colour figure can be viewed at wileyonlinelibrary.com].

	Infe	rtile m	en	Fertil	e conti	rols		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Marques 2004	100	1	96	100	1	27	13.1%	0.00 [-0.43, 0.43]	2004	+
Marques 2008	18.5	26.8	20	39.9	22.4	5	0.7%	-21.40 [-44.28, 1.48]	2008	·
Poplinsky 2010	9.6	28.2	61	3.5	6.9	30	4.4%	6.10 [-1.40, 13.60]	2010	
Hammound 2010	13	8.4	10	4.3	3.5	5	5.8%	8.70 [2.66, 14.74]	2010	
Minor 2011	4	8	18	0.2	2	9	8.5%	3.80 [-0.12, 7.72]	2011	
El HajJ 2011	6.3	1.4	106	6.2	1.6	28	12.9%	0.10 [-0.55, 0.75]	2011	+
Claver 2013	11.3	2	212	7.9	5.2	31	11.7%	3.40 [1.55, 5.25]	2013	
Montjean 2013	4.18	1	175	0.1	0.1	119	13.1%	4.08 [3.93, 4.23]	2013	•
Richardson 2014	16	1.2	95	10	0.93	45	13.1%	6.00 [5.64, 6.36]	2014	•
aurentino 2015	22.4	11.7	7	0.7	0.1	5	3.6%	21.70 [13.03, 30.37]	2015	
Ku 2016	14.9	1.4	46	15.8	1.1	49	13.0%	-0.90 [-1.41, -0.39]	2016	-
Total (95% CI)			846			353	100.0%	3.35 [1.41, 5.29]		
Heterogeneity: Tau ² -	- 7.43; (Chi ² =	915.55	. df = 1	0 (p <	0.0000	(1); $I^2 = 9$	19%		
Test for overall effect										-4 -2 0 2 4
										Controls Infertile men

Figure 5 Comparison between fertile and infertile men considering the percentage of altered methylation at MEST gene. [Colour figure can be viewed at wileyonlinelibrary.com].

	Infertile	men	Fertile co	ntrols		Risk Difference		Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
Margues 2004	0	96	0	27	14.1%	0.00 [-0.05, 0.05]	2004	_ + _
Marques 2008	0	20	0	5	2.7%	0.00 [-0.23, 0.23]	2008	
Minor 2011	1	18	0	9	4.0%	0.06 [-0.13, 0.24]	2011	
Montjean 2013	4	175	0	119	47.5%	0.02 [-0.00, 0.05]	2013	-
Klaver 2013	49	212	9	31	18.1%	-0.06 [-0.23, 0.11]	2013	
Montjean 2015	0	30	0	62	13.6%	0.00 [-0.05, 0.05]	2015	-+-
Total (95% CI)		551		253	100.0%	0.00 [-0.03, 0.04]		•
Total events	54		9					
Heterogeneity: Chi2 =	3.24, df	= 5 (p =	0.66); I ² =	0%				
Test for overall effect	t: Z = 0.13	(p = 0.	90)					-0.2 -0.1 0 0.1 0.2
								Favours [Controls] Favours [Infertile men]


Figure 6 Comparison between fertile and infertile men considering the methylation levels at SNRPN gene. [Colour figure can be viewed at wileyonlinelibrary.com].

	Infe	tile m	en	Fertil	e cont	rols		Mean Difference			Me	an Differen	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, R	andom, 95	% CI	
Hammound 2010	10	9.9	13	4.3	3.5	5	9.6%	5.70 [-0.49, 11.89]	2010				•	
El Hajj 2011	23.1	1.4	106	24.2	1.2	28	23.5%	-1.10 [-1.62, -0.58]	2011			-		
Camprubi 2012	1.2	0.2	107	1.03	0.2	30	23.8%	0.17 [0.09, 0.25]	2012			+		
Botezatu 2014	15.43	2.62	27	1.76	2.62	11	21.1%	13.67 [11.83, 15.51]	2014				-	-
Dong 2016	6.44	3.72	48	6.32	3.54	50	22.0%	0.12 [-1.32, 1.56]	2016			+		
Total (95% CI)			301			124	100.0%	3.23 [0.75, 5.72]				-	-	
Heterogeneity: Tau ² -	= 6.77; 0	chi ² =	233.63	, df = 4	(p < 0)	.00001); $l^2 = 98$	%		+			+	+
Test for overall effect	: Z = 2.5	55 (p=	= 0.01)							-20	-10	0	10	20
											Cor	ntrols Infer	tile men	

Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility

Human Reproduction, Vol.30, No.5 pp. 1014-1028, 2015

Rocío G. Urdinguio^{1,†}, Gustavo F. Bayón^{1,†}, Marija Dmitrijeva¹, Estela G. Toraño¹, Cristina Bravo¹, Mario F. Fraga^{1,2}, Lluís Bassas³, Sara Larriba^{4,*}, and Agustín F. Fernández^{1,*}

54 CpG sites associated with **48 imprinted genes** were aberrantly methylated in infertile patients. Specifically, 33 CpG sites (related to 28 genes) were hypermethylated and 21 CpG sites (related to 28 genes) were hypomethylated; 8 genes showed both hyper- and hypomethylation

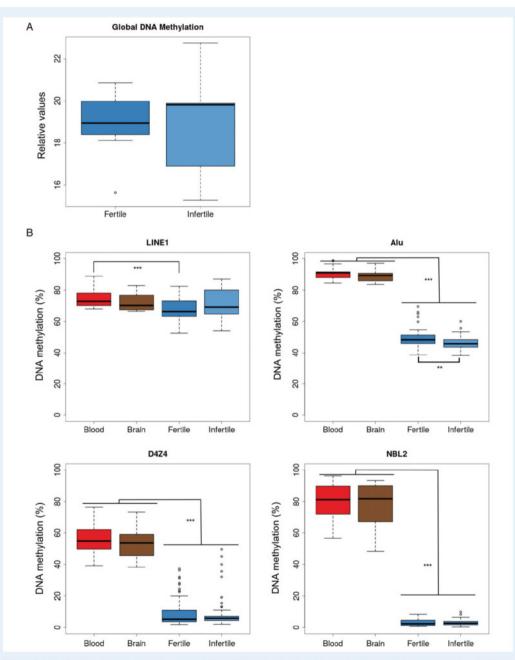


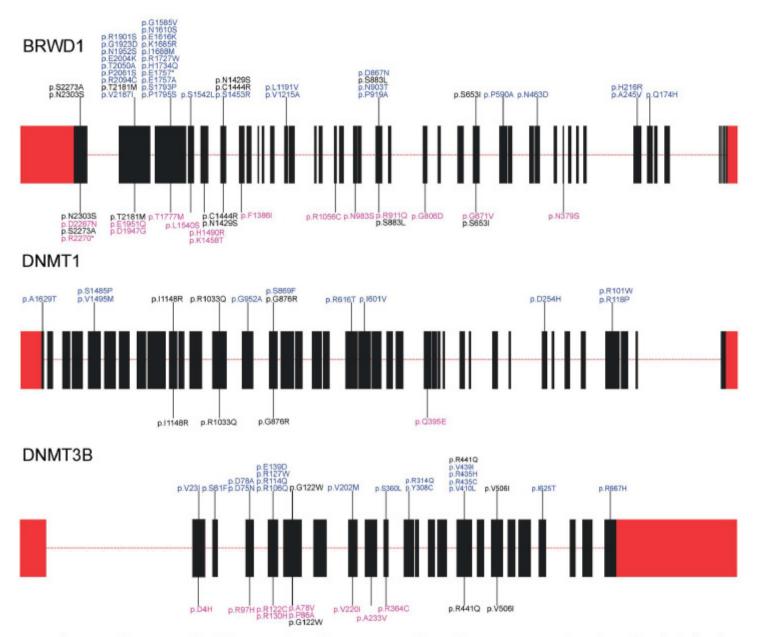
Figure 3 Global DNA methylation patterns in sperm. (A) Global DNA methylation levels of sperm from fertile individuals and normospermic infertile patients obtained in a colorimetric assay. (B) DNA methylation values of several repetitive regions (LINE-1, Alu Yb8, NBL-2 and D4Z4) measured by bisulfite pyrosequencing in sperm (controls and patients) and somatic cells (blood and brain). ***P < 0.001; **P < 0.001;

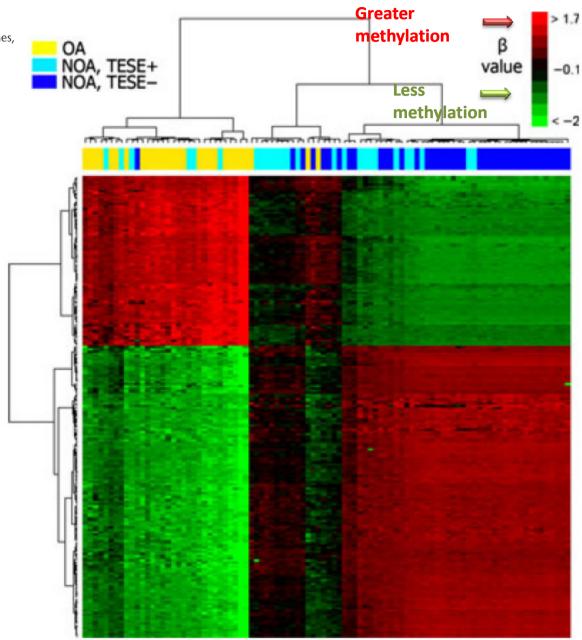
Excess of Rare Variants in Genes that are Key Epigenetic Regulators of Spermatogenesis in the Patients with Non-Obstructive Azoospermia

Zesong Li^{1,2,3*}, Yi Huang^{2,3*}, Honggang Li^{4*}, Jingchu Hu^{5*}, Xiao Liu^{5*}, Tao Jiang⁵, Guangqing Sun⁵, Aifa Tang^{2,3}, Xiaojuan Sun^{2,3}, Weiping Qian⁶, Yong Zeng⁷, Jun Xie¹, Wei Zhao⁵, Yu Xu⁵, Tingting He⁵, Chengliang Dong⁵, Qunlong Liu⁶, Lisha Mou^{1,2,3}, Jingxiao Lu^{2,3}, Zheguang Lin¹, Song Wu^{2,3}, Shengjie Gao⁵, Guangwu Guo⁵, Qiang Feng⁵, Yingrui Li⁵, Xiuqing Zhang⁵, Jun Wang⁵, Huanming Yang⁵, Jian Wang⁵, Chengliang Xiong⁴, Zhiming Cai^{2,3} & Yaoting Gui¹

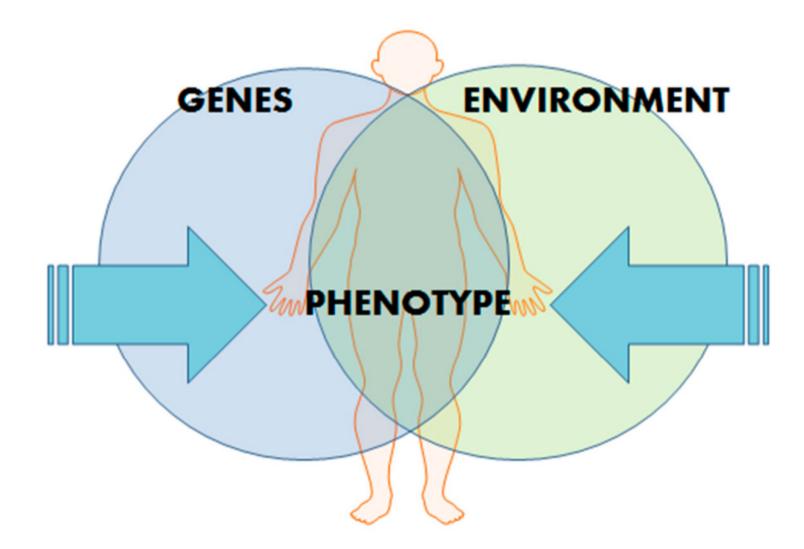
SCIENTIFIC REPORTS | 5:8785 | 2015

					Carrier fr	equency <mark>(</mark> %)		
Gene	BURDEN	FRQWGT	UNIQ	VT	Cases	Controls	OR	Fisher <i>F</i>
BRWD1°	7.4 × 10 ⁻⁴	9.9 × 10 ⁻⁴	2.7 × 10 ⁻³	1.5 × 10 ⁻³	7.27	4.09	1.84	0.01
PDGFC	$3.6 imes 10^{-3}$	1.6 × 10 ⁻³	-	$3.8 imes 10^{-3}$	2.51	0.71	3.62	0.007
ATF4	$4.1 imes 10^{-3}$	9.1 × 10 ⁻³	-	7.9 × 10 ⁻³	2.64	0.85	3.18	0.01
LIMK2ª	6.7 × 10 ⁻³	8.1 × 10 ⁻³	4.1×10^{-2}	$9.5 imes 10^{-3}$	3.43	1.13	3.11	0.005
ADORA1°	$7.5 imes 10^{-3}$	7.0 × 10 ⁻³	$1.5 imes 10^{-2}$	$2.2 imes 10^{-2}$	1.72	0.42	4.11	0.02
CDA	$1.3 imes 10^{-2}$	$2.6 imes 10^{-2}$	$9.4 imes 10^{-3}$	$2.6 imes 10^{-2}$	1.85	0.56	3.32	0.03
TSSK2ª	$1.4 imes 10^{-2}$	1.4×10^{-2}	$1.5 imes 10^{-2}$	$2.0 imes 10^{-2}$	2.38	0.85	2.85	0.02
UBR2°	1.9×10^{-2}	$3.0 imes 10^{-2}$	-	-	5.68	3.39	1.97	0.04
USP26	$2.0 imes 10^{-2}$	$3.2 imes 10^{-2}$	$1.5 imes 10^{-2}$	$2.0 imes 10^{-2}$	1.19	0.28	4.25	0.07
TCEB3B	2.1×10^{-2}	$5.4 imes 10^{-3}$	-	$3.4 imes 10^{-2}$	7.00	4.37	1.65	0.03
RAD23B°	$2.6 imes 10^{-2}$	$2.3 imes 10^{-2}$	-	-	1.19	0.28	4.25	0.07
SOX9	$2.8 imes 10^{-2}$	1.9×10^{-2}	-	$3.1 imes 10^{-2}$	1.32	0.42	3.15	0.09
SLC19A2°	$3.3 imes 10^{-2}$	$2.6 imes 10^{-2}$	$1.9 imes 10^{-2}$	$4.7 imes 10^{-2}$	1.32	0.42	3.15	0.09
VDRª	$4.5 imes 10^{-2}$	$2.1 imes 10^{-2}$	$2.9 imes 10^{-2}$	1.1×10^{-2}	1.45	0.56	2.60	0.12
SLC19A1°	-	-	$1.6 imes 10^{-2}$	-	1.85	0.99	1.89	0.19
CDKN1B°	-	-	$4.9 imes 10^{-3}$	-	1.32	0.56	2.36	0.18
ETV5°	-	-	$2.3 imes 10^{-2}$	-	0.66	0.14	4.70	0.22
RNF17ª	-	$4.5 imes 10^{-2}$	$1.4 imes 10^{-2}$	$2.2 imes 10^{-2}$	3.70	2.54	1.47	0.23
DNMT3B	-	-	$2.5 imes 10^{-2}$	-	3.96	2.82	1.42	0.25
SULT1E1°	-	-	-	$2.0 imes 10^{-2}$	1.19	0.56	2.12	0.27
DNMT1	-	$3.9 imes 10^{-2}$	-	$1.3 imes 10^{-2}$	1.72	0.99	1.75	0.27




Figure 2 | Rare non-silent variants identified in genes that are key epigenetic regulators of spermatogenesis. Variants shown above the indicated gene maps were detected in NOA patients, and variants shown below the indicated gene maps were detected in controls. Rare variants that were identified in both the patient and control groups are colored black, and rare variants that were exclusive to the NOA patients and normal controls are colored blue and pink, respectively. Boxes labeled in red represent the UTRs and boxes labeled in black represent the exons.

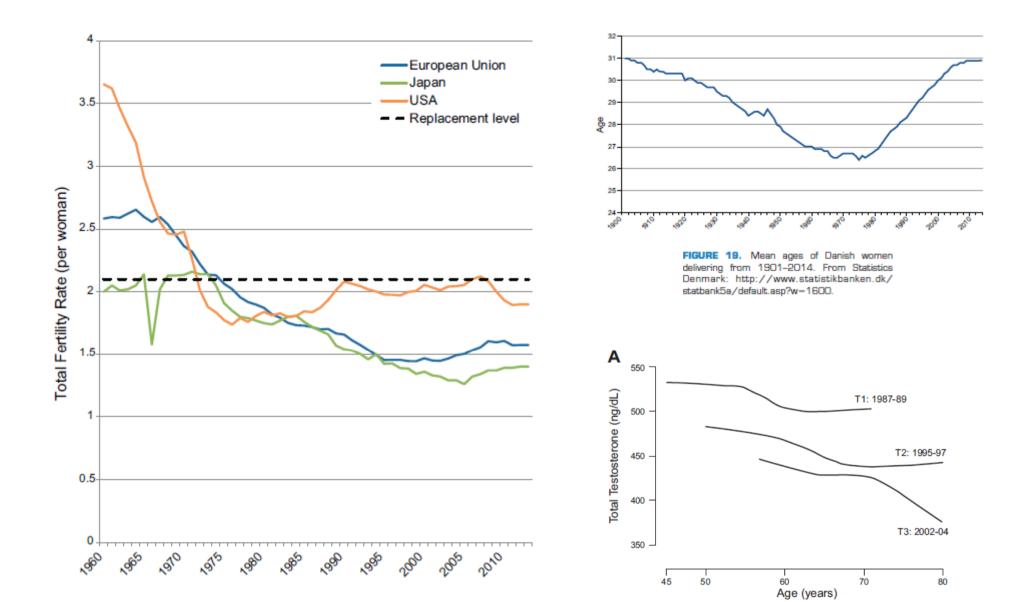
A genome-wide DNA methylation study in azoospermia

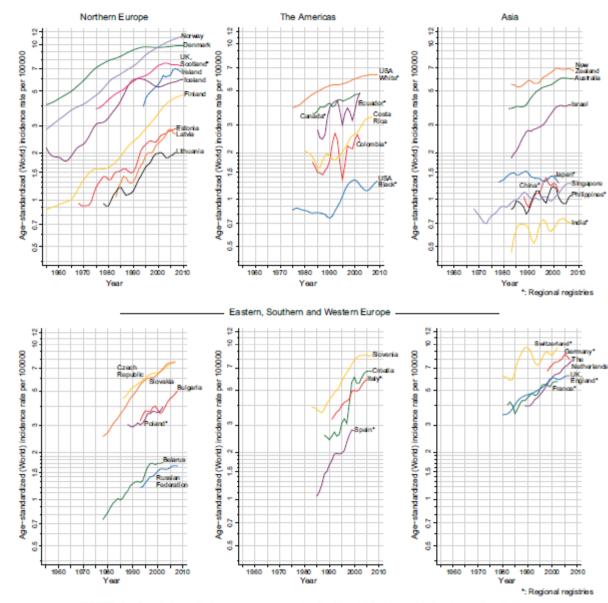

^{1,2}F. Ferfouri, ^{1,2}F. Boitrelle, ³I. Ghout, ^{1,2}M. Albert, ^{1,2}D. Molina Gomes, ^{1,2}R. Wainer, ^{1,2}M. Bailly, ^{1,2}J. Selva and ^{1,2}F. Vialard

ANDROLOGY

Andrology, 2013, 1, 815-821

Epigenetic transgenerational inheritance: phenotypes


MALE REPRODUCTIVE DISORDERS AND FERTILITY TRENDS: INFLUENCES OF ENVIRONMENT AND GENETIC SUSCEPTIBILITY


Niels E. Skakkebaek, Ewa Rajpert-De Meyts, Germaine M. Buck Louis, Jorma Toppari, Anna-Maria Andersson, Michael L. Eisenberg, Tina Kold Jensen, Niels Jørgensen, Shanna H. Swan, Katherine J. Sapra, Søren Ziebe, Lærke Priskorn, and Anders Juul

Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark

Physiol Rev 96: 55-97, 2016

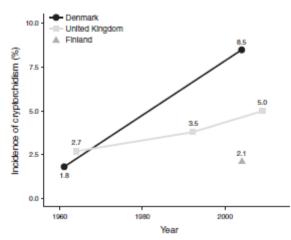


FIGURE 7. Incidence of cryptorchidism at birth on the basis of prospective clinical studies from the 1950s to the 2000s in Denmark, Finland, and United Kingdom. The data points are marked on the year of the publication of the study which represents the preceding incidence rate (3, 47, 61, 184, 377).

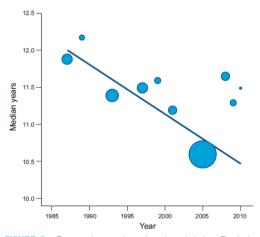
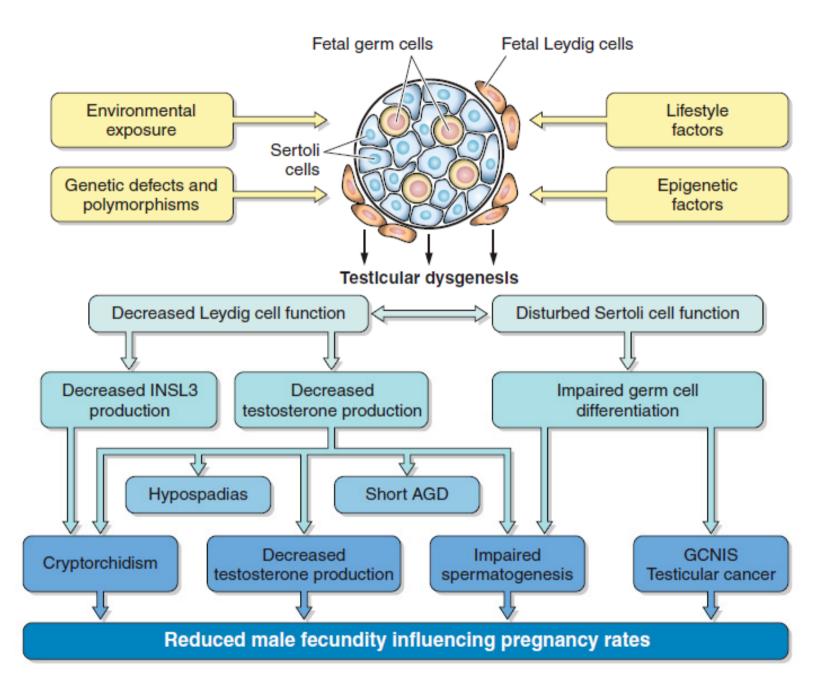
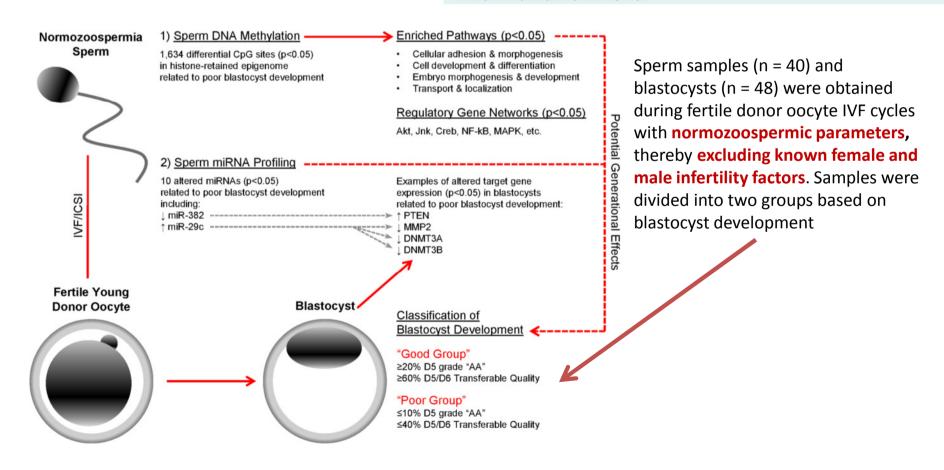



FIGURE 8. Recent changes in male pubertal timing. Testicular volume was >3 ml. [From Mouritsen et al. (293).]

FIGURE 4. Trends in testicular cancer; age-standardized (world) incidence (regional or national), all ages.

Physiol Rev • VOL 96 • JANUARY 2016

Epigenetic transgenerational inheritance in F2 generation


Alterations in the sperm histoneretained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles

Michelle M. Denomme¹, Blair R. McCallie¹, Jason C. Parks¹, William B. Schoolcraft², and Mandy G. Katz-Jaffe^{1,2,*}

Human Reproduction, Vol.32, No.12 pp. 2443-2455, 2017

	Paternal age	Semen parameters									
	(years)	Volume (mL)	Motility (%)	Count (million/mL)	Total motile count (million/mL)						
Good Group	40.3 ± 1.3	2.9±0.3	60.3% ± 3.1%	126.9 ± 14.1	221.7 ± 32.2						
Poor Group	42.0 ± 1.1	3.4 ± 0.3	61.1% ± 2.6%	134.5 ± 18.8	290.4 ± 48.5						
Significance (t-test); P < 0.05	0.311	0.306	0.851	0.753	0.255						
	Maternal	Embryo Quality									
	Age (years)	Oocytes Retrieved (#)	Oocytes Fertilized (% of retrieved)	Grade D5 'AA' Blastocysts (% of fertilized)	Transferable D5&D6 Blastocysts (% of fertilized						
Good Group	<33; donor oocyte	25.6 ± 1.7	93.3% ± 2.3%	36.5% ± 3.0%	73.0% ± 2.4%						
Poor Group	<33; donor oocyte	20.8 ± 2.3	93.2% ± 2.2%	$0.8\%\pm0.4\%$	20.9% ± 2.3%						
Significance (t-test); P < 0.05		0.101	0.965	<0.001	< 0.00						

Value after the \pm reflect standard error of the mean. Bold values indicate statistically significant differences between groups. Good Group: n = 25 couples; 20 sperm samples, 24 blastocyst samples. Poor Group: n = 28 couples; 20 sperm samples, 24 blastocyst samples

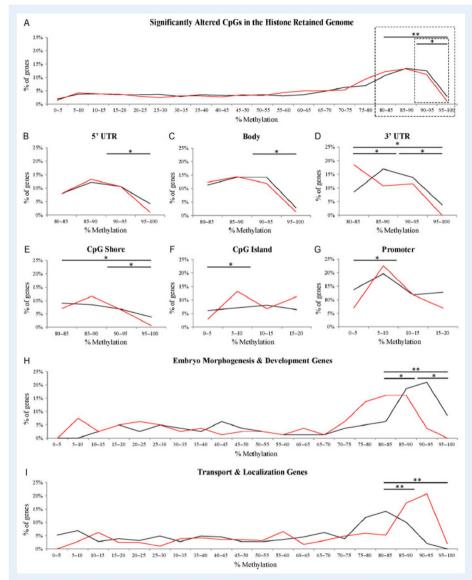


Figure 2 Spern DNA methylation profiles of statistically significant genes for the histone-retained genome and across defined genomic regions. Mean methylation (β -values) for all significantly altered genes between the Good Group (black lines) and the Poor Group (red lines) distributed into 5% methylation intervals for (**A**) the histone-retained genome (1634 CpGs), (**B–E**) hypermethylated genomic regions: 5'UTR (189 CpGs), body (1185

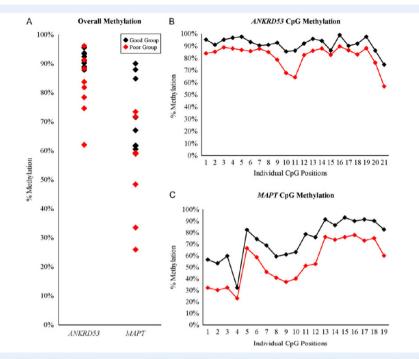
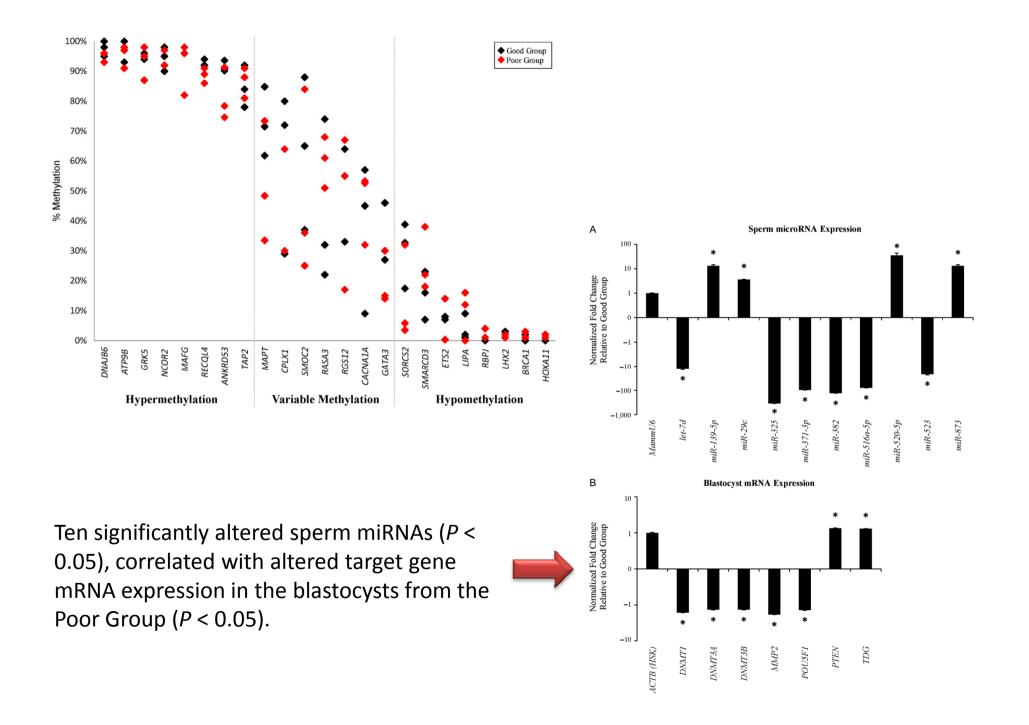



Figure 6 Sperm DNA methylation percentages at ANKRD53 and MAPT. Targeted DNA methylation analysis in individual normozoospermic samples (n = 16) at ANKRD53 and MAPT. Black diamonds represent sperm from the Good Group, and red diamonds represent sperm from the Poor Group. (A) Each diamond is positioned at the average percent methylation for the individual sperm sample. (B) Average percent methylation is distributed by the 21 CpG positions at ANKRD53 for both groups (Good Group; 91.6%; Poor Group; 82.0%; P < 0.05). (C) Average percent methylation is distributed to the dy the 19 CpG positions at ANAPT for both groups (Good Group; 73.1%; Poor Group; 53.8%; P < 0.05).



DNA methylation differences between *in vitro-* and *in vivo-*conceived children are associated with ART procedures rather than infertility

Sisi Song¹, Jayashri Ghosh¹, Monica Mainigi², Nahid Turan¹, Rachel Weinerman², May Truongcao', Christos Coutifaris^{2*} and Carmen Sapienza^{1,3*}

Clinical Epigenetics (2015) 7:41

Placental DNA methylation of genes previously identified as being differentially methylated between in vitro- and in vivo-conceived children The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility

C Choux C Binquet V Carmignac C Bruno C Chapusot J Barberet M Lamotte P SagotD Bourc'his P Fauque

Human Reproduction – epub ahead of print **December 11, 2017**

A total of 51 IVF/ICSI (15 conventional and 36 ICSI) singleton pregnancies were prospectively included from January 2013 to April 2015 and compared to 48 spontaneously conceived singleton pregnancies.

The DNA methylation and transcription of three imprinted loci (*H19/IGF2, KCNQ1OT1* and *SNURF* DMRs) and four transposon families (LINE-1, ERVFRD, AluYa5 and ERVW) in cord blood and placenta obtained at birth were assessed by pyrosequencing and quantitative RT-PCR, respectively. All data were adjusted for gestational age at delivery, sex of the newborn, parity and maternal age.

MAIN RESULTS AND THE ROLE OF CHANCE

DNA methylation levels of *H19/IGF2*, *KCNQ1OT1*, LINE-1Hs and ERVFRD-1 were significantly lower in IVF/ICSI placentas than in control placentas, while there was no difference for cord blood. Moreover, the expression of ERVFRD-1 and LINE-1 ORF2 in cord blood and ERVFRD-1 in placenta was lower in the IVF/ICSI group than in controls. The expression of ERVFRD-1 in placenta correlated positively with birth weight and placenta weight, but only in the control group, thus pointing to the potential deregulation of syncytin function after ART.

WIDER IMPLICATIONS OF THE FINDINGS

These results should encourage us to analyze the exact causes and consequences of epigenetic changes and strive to minimize these variations in the interests of epigenetic safety after ART

Inter- and Intra-Individual Variation in Allele-Specific DNA Methylation and Gene Expression in Children Conceived using Assisted Reproductive Technology

Nahid Turan¹, Sunita Katari¹, Leigh F. Gerson¹, Raffi Chalian², Michael W. Foster², John P. Gaughan³, Christos Coutifaris², Carmen Sapienza^{1,4}

PLoS Genetics | July 2010 | Volume 6 | Issue 7 | e1001033

A, B, C cord blood D, E, F placenta

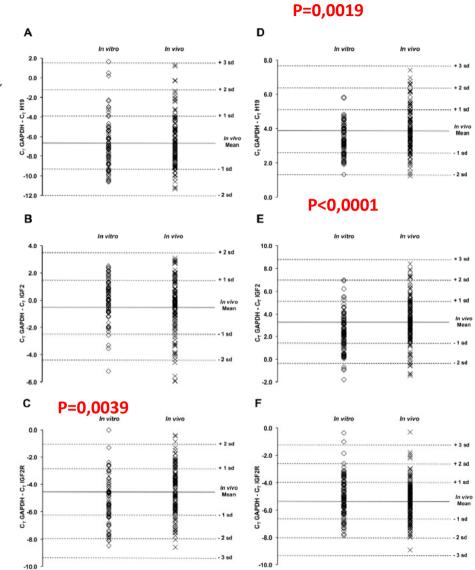


Figure 4. Scatter plots showing mRNA transcript levels in the *in vitro* and *in vivo* populations. Each symbol represents the mRNA level in one individual. (A) H19 in cord blood (*in vitro* n = 73, *in vivo* n = 118, fold change 0.88, P = 0.8774), (B) (SF2 in cord blood (*in vitro* n = 77, *in vivo* n = 112, fold change 0.80, P = 0.8774), (B) (SF2 in cord blood (*in vitro* n = 77, *in vivo* n = 112, fold change 0.61, P = 0.0039), (D) H19 in placenta (*in vitro* n = 84, *in vivo* n = 135, fold change 0.72, P = 0.0193), (E) IGF2 in placenta (*in vitro* n = 98, *in vivo* n = 160, fold change 0.52, P < 0.0001), and (F) IGF2R in placenta (*in vitro* n = 98, *in vivo* n = 160, fold change 0.52, P < 0.0001), and (F) IGF2R in placenta (*in vitro* n = 97, *in vivo* n = 148, fold change 1.18, P = 0.2227).

A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously

Gabija Lazaraviciute¹, Miriam Kauser¹, Sohinee Bhattacharya¹, Paul Haggarty², and Siladitya Bhattacharya^{1,*}

Human Reproduction Update, Vol.20, No.6 pp. 840-852, 2014

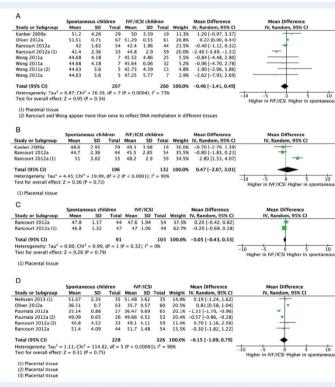


Figure 3 Forest plot analyses for weighted mean difference (95% confidence intervals) in methylation percent between IVF/ICSI versus spontaneously conceived children for (A) H19, (B) PEG1/MEST, (C) GRB10, (D) IGF2, (E) SNRPN, (F) KvDMR/KCNQ10T1 and (G) PEG3.

human reproduction update

Specific regions

F Sportsmearus (Höfferen PVF/IC51 Maan Mont SO Total Weight Weight N, Random .995 Cl 3931 5.95 35 3562 10.08 35 5.8% 2.691-1.136. 557 3129 0.65 68 52.35 7.7 62 42.5% -1.06-1.31.-0.81 40.9 1.8 44 40.8 2.3 54 3.8% 0.16-071.0.93 41 4.48 34 42.67 7.2 59 1.50 -1.60-6.340, 0.20 Mean Difference IV, Random, 95% Cl Study or Subgroup Nelissen 2013 (1) Oliver 2012a Rancourt 2012a Rancourt 2012a (2) Total (95% CI) 180 210 100.0% -0.55 [-1.55, 0.46] Heterogeneity: Tau² = 0.61; Chi² = 11.07, df = 3 (P = 0.01); i² = 73% Test for overall effect: Z = 1.07 (P = 0.29) -5 0 or in IVF/ICSI Higher in (1) Placental tissue (2) Placental tissue Mean Difference IV, Fixed, 95% CI Study or Subgroup Kanber 2009a Nelissen 2013 (1) Oliver 2012a Puumala 2012a Puumala 2012a (2) Mean 45.4 48.42 45.9 51.99 46.68 42.6 42 Rancourt 2012a (3) Rancourt 2012a Heterogeneity: $Chi^2 = 11.23$, df = 6 (P = 0.08); $l^2 = 47\%$ Test for overall effect: 2 = 1.71 (P = 0.09) 351 100.0% -0.16 [-0.34, 0.02] -5 0 5 wr in IVF/ICSI Higher in s (1) Placental tissue (2) Placental tissue (2) Placental tissue G IVE/ICS Study or Subgroup Kanber 2009a Nelissen 2013 (1) More and the provided more and Mean 46.7 45.18 Total (95% CI) 54 100.0% -0.24 (-1.72, 1.24) Heterogeneity: Tau² = 0.58; Chi² = 2.04, df = 1 (P = 0.15); l² = 51% Test for overall effect: Z = 0.32 (P = 0.75) (1) Placental tissue

Figure 3 Continued.

Risk of any imprinting disorder

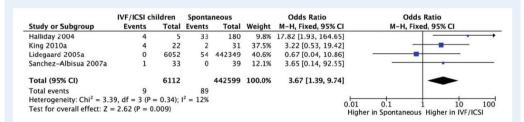
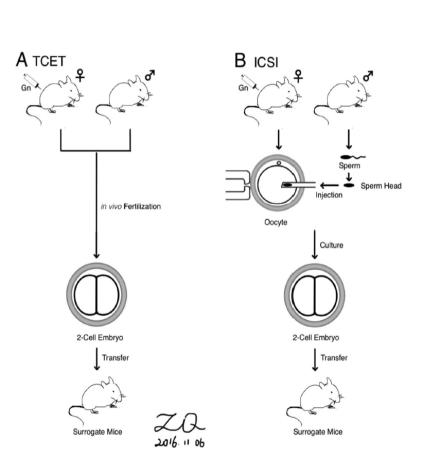
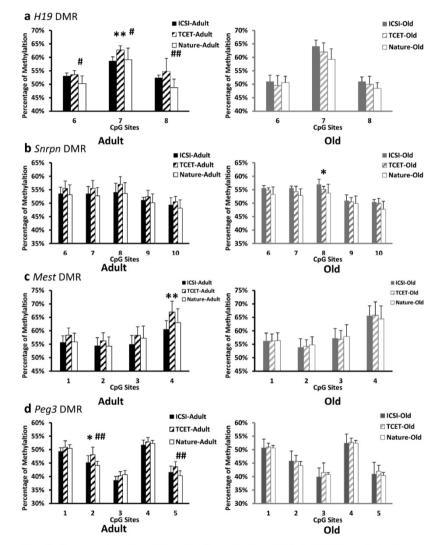




Figure 4 Forest plot analyses for risk of any imprinting disorder between IVF/ICSI versus spontaneously conceived children.

Altered methylations of H19, Snrpn, Mest and Peg3 are reversible by developmental reprogramming in kidney tissue of ICSI-derived mice

Figure 3. Pyrosequencing analyses of the methylation profiles from ICSI-derived, TCET conceived and natural mating mice of adult and old age. There are 3 CpG sites for the *H1* DMR (**a**), 5 CpG sites for the *Snrpn* DMR (**b**), 4 CpG sites for the *Mest* DMR (**c**) and 5 CpG sites for the *Peg3* DMR (**d**) (t-test was used for the analysis. ICSI versus TCET: $*^*p < 0.01$; *p < 0.05. TCET versus Nature: $*^*p < 0.01$; *p < 0.05.) The pyrosequencing of one sample in each gene and each group was shown in Supplementary Figure S1.

SCIENTIFIC REPORTS 7: 11936 2017

Conclusioni

- Le patologie cromosomiche e genetiche sono causa di infertilità in non più del 5% dei casi
- Le alterazioni epigenetiche sembrano, invece, interessare una fascia più ampia di pazienti
- Le modificazioni epigenetiche indotte da fattori ambientali sono trasmissibili per via transgenerazionale
- L'esposizione attuale a fattori di rischio potrebbe compromettere la salute delle generazioni successive
- IVF outcome: LBR or Healthy babies?
- Non è ancora chiaro se le alterazioni epigenetiche transgenerazionali possano essere reversibili

