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Abstract Purpose: Recently, several prognostic gene expression signatures have been identified;
however, their performance has never been evaluated according to the previously described
molecular subtypes based on the estrogen receptor (ER) and human epidermal growth factor
receptor 2 (HER2), and their biological meaning has remained unclear. Here we aimed to perform
a comprehensive meta-analysis integrating both clinicopathologic and gene expression data,
focusing on the mainmolecular subtypes.
Experimental Design: We developed gene expression modules related to key biological
processes in breast cancer such as tumor invasion, immune response, angiogenesis, apoptosis,
proliferation, and ERand HER2 signaling, and then analyzed these modules together with clinical
variables and several prognostic signatures on publicly available microarray studies (>2,100
patients).
Results: Multivariate analysis showed that in the ER+/HER2- subgroup, only the proliferation
module and the histologic grade were significantly associated with clinical outcome. In the
ER-/HER2- subgroup, only the immune responsemodulewas associatedwith prognosis,where-
as in the HER2+ tumors, the tumor invasion and immune response modules displayed significant
association with survival. Proliferation was identified as the most important component of
several prognostic signatures, and their performance was limited to the ER+/HER2- subgroup.
Conclusions:Althoughproliferation is the strongest parameter predicting clinical outcome in the
ER+/HER2- subtype and the common denominator of most prognostic gene signatures, immune
response and tumor invasion seem to be themainmolecular processes associatedwithprognosis
in the ER-/HER2- and HER2+ subgroups, respectively. These findings may help to define new
clinicogenomic models and to identify new therapeutic strategies in the specific molecular
subgroups.

The prognosis and management of breast cancer has always
been influenced by the classic variables such as histologic type
and grade; tumor size; lymph node involvement; and the status
of estrogen receptor (ER; ESR1), progesterone receptor, and
human epidermal growth factor receptor 2 (HER2; ERBB2) of
the tumor. During the last two decades, the prognosis of breast
cancer has extensively been studied using several clinicopath-
ologic parameters and tumor markers reflecting different stages
of the disease and breast tumor biology. Recently, different
research groups identified gene expression signatures predicting
clinical outcome (1–10). A feature common to all these gene
expression signatures is that they outperform conventional

clinicopathologic criteria mostly by identifying a higher
proportion of low-risk patients not necessarily needing systemic
adjuvant treatment, while still correctly identifying the high-risk
patients. Although the signatures all address the same clinical
question, it might be surprising that there is only little or no
overlap between their gene lists, raising questions about their
biological meaning. Moreover, although it has repeatedly and
consistently been shown that breast cancer, in addition to being
a clinically heterogeneous disease, is also molecularly hetero-
geneous, with subgroups primarily defined by ER and HER2
expression, the different prognostic signatures were never
clearly evaluated and compared in these different molecular
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subgroups. This was probably due to the relatively small sizes of
the individual studies, which would have made these findings
statistically unstable.
To address these issues, we have undertaken a large

comprehensive meta-analysis integrating both the gene expres-
sion and clinicopathologic data of more than 2,100 breast
cancer patients. We first defined several gene expression
modules associated with key biological processes in breast
cancer: proliferation, which was the main component of our
recently characterized genomic grade index (7); tumor inva-
sion/metastasis; impairment of immune response; sustained
angiogenesis; evasion of apoptosis; self-sufficiency in growth
signals; and ER and HER2 signaling. We then sought to
elucidate the prognostic information of these gene expression
modules and the traditional clinicopathologic parameters used
in the clinic in the previously defined molecular breast cancer
subtypes according to ER and HER2 module status. We further
investigated the biological meaning of individual genes
included in several gene expression prognostic signatures by
correlating their expression with our molecular modules and
explored their prognostic performance across the main breast
cancer molecular subtypes.

Materials and Methods

Gene expression data and probe annotation. Gene expression data
sets were retrieved from public databases or authors’ websites. We used
normalized data (log 2 intensity in single-channel platforms or log 2
ratio in dual-channel platforms) as published by the original studies.
Hybridization probes were mapped to Entrez GeneID (11) through
sequence alignment against RefSeq mRNA in the (NM) subset, as in Shi

et al. (12), using RefSeq and Entrez database version 2007.01.21. When
multiple probes were mapped to the same GeneID, the one with the
highest variance in a particular data set was selected to represent the
GeneID.
Prototype-based coexpression modules. We considered a set of

prototypes (i.e., genes known to be related to specific biological
processes in breast cancer) and aimed to identify the genes that are
specifically coexpressed with each of them. To this end, we identified a
gene module for prototype i by selecting the genes whose expression is
significantly more correlated to the prototype i than to the other
prototypes. We used the orthogonal Gram-Schmidt variable selection
(13) and the Friedman’s test to compute the correlations and compare
them, respectively. The genes in the module i are referred to as
‘‘specific’’ to prototype i . The genes being highly correlated to several
prototypes are referred to as ‘‘related’’ to these prototypes. This method
was applied in a meta-analytical framework, combining results from
NKI2 (2) and VDX (3) data sets (see Table 1).
Module scores. For a specific data set, the module score was

computed for each sample as

module score ¼ f
i
wixi=f

i
jwij

where xi is the expression of a gene in the module that is present in the
data set platform, and wi is either +1 or -1 depending on the sign of the
association with the prototype. Robust scaling was done on each
module score to have the interquartile range equal to 1 and the median
equal to 0 within each data set, allowing for comparison between
module scores.
Gene ontology and functional analysis. Gene ontology analyses were

done using Ingenuity Pathways Analysis tools6 (Ingenuity Systems), a
web-delivered application that enables the discovery, visualization, and
exploration of molecular interaction networks in gene expression data.

6 http://www.ingenuity.com

Table 1. Characteristics of the publicly available gene expression data sets

NKI NKI2 STNO2 NCI MGH UPP STK

No. patients (%)

Total 76 295 118 99 60 110 159
Age (y)

V50 53 (70) 264 (90) 37 (31) 29 (30) 2 (4) 25 (22) 53 (33)
>50 23 (30) 31 (10) 81 (69) 70 (70) 58 (96) 85 (78) 106 (67)

Size (cm)
V2 46 (60) 155 (52) 19 (17) 36 (37) 29 (49) 72 (66) 0
>2 30 (40) 140 (48) 94 (80) 63 (63) 31 (51) 38 (35) 0

Nodal status
Negative 57 (75) 151 (51) 34 (29) 46 (47) 28 (47) 75 (69) 0
Positive 19 (25) 144 (49) 79 (67) 53 (53) 25 (42) 29 (27) 0

Tumor grade
1 9 (11) 75 (25) 11 (10) 16 (17) 3 (5) 31 (29) 28 (18)
2 18 (24) 101 (35) 49 (42) 38 (38) 39 (65) 53 (49) 58 (37)
3 49 (65) 119 (40) 53 (45) 45 (45) 18 (30) 25 (22) 61 (39)

Estrogen receptors
Negative 28 (37) 69 (24) 31 (27) 34 (35) 1 (1) 16 (15) 29 (19)
Positive 48 (63) 226 (76) 82 (70) 65 (65) 59 (99) 92 (84) 130 (81)

Treatment
Untreated 76 (100) 165 (55) 22 (19) 11 (11) 0 110 (100) 0
Treated 0 130 (45) 96 (81) 88 (89) 60 (100) 0 48 (31)

Platform Agilent Agilent Stanford Microarray cDNA NCI Arcturus Affymetrix Affymetrix
Reference (1) (2) (17) (18) (19) (9) (20)

NOTE: Note that some samples are used in several studies. The following study IDs have samples in common: NKI/NKI2 and UPP/STK/UNT/
TBAGD/TBVDX/TAM. For all analyses, we removed duplicated patients from small data sets (e.g., NKI) to avoid decreasing the sample size of
large data sets (e.g., NKI2).

Meta-Analysis of Breast Cancer Gene Expression Data

www.aacrjournals.org Clin Cancer Res 2008;14(16) August15, 20085159

Cancer Research. 
on September 14, 2015. © 2008 American Association forclincancerres.aacrjournals.org Downloaded from 

http://clincancerres.aacrjournals.org/


Clustering. To consistently identify molecular subgroups across the
different data sets, we clustered the tumors using the ESR1 and ERBB2
module scores by fitting Gaussian mixture models (14) with equal and
diagonal variance for all clusters. We used the Bayesian Information
Criterion (15) to test the number of components. Each tumor was
automatically classified to one of the identified molecular subgroups
using the maximum posterior probability of membership in the
clusters.
Survival analysis. We considered relapse-free survival of untreated

patients as the survival end point. When relapse-free survival was not
available, we used distant metastasis– free survival data. All survival
data were censored at 10 years. Survival curves were based on Kaplan-
Meier estimates. Hazard ratios (HR) between two or three groups
were calculated using Cox regression with the data set as stratum
indicator, allowing for different baseline hazard functions between
cohorts. For clinical variables and module scores, the HRs were
estimated for each data set separately and combined with inverse

variance-weighted method with fixed effect model (16). We used a
forward stepwise variable selection in a meta-analytical framework to
identify the best multivariate Cox models. The significance thresholds
of the combined P values (Wald test for HR) for the inclusion of a
new variable and for the exclusion of a previously selected variable
were set to 0.05.
Application of the prognostic gene signatures. When cross-platform

mapping was necessary, we only considered genes in the signatures that
could be mapped to GeneID. A prediction score was computed for each
signature using a linear combination similar to the formula for module
score above. Gene-specific weights (coefficients, correlations, or other
measures) from the original studies were converted into +1 or -1
depending on the original up-regulation or down-regulation of each
gene. Robust scaling was done on each gene signature to allow for
comparison between the different gene signatures.

For a more detailed description of the methods, see Supplementary
Methods.

Fig. 1. Joint distribution between the ER and HER2module scores for three example data sets: NKI2 (A), UNC (B), andVDX (C). Clusters are identified by Gaussianmixture
models with three components.The ellipses shown are the multivariate analogs of the SDs of the Gaussian of each cluster.

Table 1. Characteristics of the publicly available gene expression data sets (Cont’d)

VDX VDX2 UNT UNC TBAGD TBVDX TAM

No. patients (%)

286 180 78 144 109 198 268

129 (45) 50 (28) 29 (38) 57 (40) 62 (56) 142 (71) 21 (8)
157 (55) 129 (72) 49 (62) 79 (55) 47 (44) 56 (29) 247 (92)

278 (97) 95 (53) 49 (63) 104 (73) 66 (60) 102 (51) 110 (42)
8 (3) 85 (47) 29 (37) 30 (21) 43 (40) 96 (49) 158 (58)

286 (100) 180 (100) 78 (100) 62 (44) 109 (100) 198 (100) 116 (44)
0 0 0 75 (53) 0 0 143 (54)

7 (3) 17 (10) 20 (26) 12 (9) 17 (16) 30 (16) 50 (19)
42 (15) 81 (45) 30 (39) 46 (32) 44 (41) 83 (42) 131 (49)

148 (52) 56 (32) 15 (20) 74 (52) 42 (39) 83 (42) 47 (18)

77 (27) 47 (27) 21 (27) 54 (38) 26 (24) 64 (33) 5 (2)
209 (73) 132 (73) 53 (68) 82 (57) 78 (72) 134 (67) 263 (98)

286 (100) 180 (100) 78 (100) 0 109 (100) 198 (100) 0
0 0 0 144 (100) 0 0 268 (100)

Affymetrix Affymetrix Affymetrix Agilent Agilent Affymetrix Affymetrix
(3) (4) (7) (21) (22) (23) (24)
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Results

Definition of the gene expression modules of breast cancer. To
develop the gene expression modules, we first selected genes to
act as ‘‘prototypes’’ for each biological process, based on the
literature. We then applied a comparison of linear models to
generate modules of genes specifically associated with each of
the prototype genes underlying different biological processes in
breast cancer. The selected prototype genes were AURKA (also
known as STK6, STK7, or STK15), PLAU (also known as uPA),
STAT1, VEGF, CASP3, ESR1 , and ERBB2 , representing the
proliferation, tumor invasion/metastasis, immune response,

angiogenesis, apoptosis phenotypes, and the ER and HER2
signaling, respectively.
These lists of genes are available as Supplementary Table S1.

The main characteristics of these molecular modules are that
they are identified as genes that are coexpressed consistently
with the chosen prototypes in data sets using Agilent and
Affymetrix microarray platforms and that they are identified
without looking at clinical variables and gene annotations.
The seven gene lists were uploaded into the Ingenuity Pathway

Knowledge Database for the analysis of functional annotations.
The detailed results can be found in Supplementary Table S2.
In brief, as expected, many genes included in these modules
were known to be associated with the chosen biological process.
Amodule score was then defined by the difference of the sums

of the positively and negatively correlated genes for the chosen
prototype only. We then mapped and computed each of these
module scores on several publishedmicroarray data sets (1–4, 7,
9, 17–24), totaling tomore than 2,100 tumor samples (Table 1).
Identification of the ER-/HER2-, ER+/HER2-, and HER2+

subgroups. In our analysis, we reexamined the molecular
classification of breast cancer based on ER and HER2 module
scores. Interestingly, when the ER and HER2module scores were
combined, the tumor samples grouped into three main clusters
instead of the four that would have been observed had the two
scores been completely independent. These groups represented
the ER-/HER2-, HER2+, and ER+/HER2- tumors, corresponding
roughly to the intrinsic basal-like, HER2, and combined luminal
A/B subtypes, respectively, as defined by the Stanford group
(17, 25, 26). Notably, the HER2+ cluster showed intermediate
levels of ER module scores, highlighting the intrinsic biological
differences that characterize this molecular subtype with respect
to ER signaling (Fig. 1; Supplementary Fig. S3).
The clinicopathologic characteristics per molecular subgroup

are illustrated in Supplementary Table S5. As one would expect,
the vast majority of the tumors in the ER-/HER2- and ER+/
HER2- subgroups were negative and positive, respectively, with
respect to ER protein status, in contrast to the HER2+ subgroup
that comprised a mixture of tumors.

Fig. 2. Survival curves for untreated patients stratified by molecular subtypes
ER-/HER2-, HER2+, and ER+/HER2-.

Fig. 3. Forest plots showing the log 2 HRs (and 95% CI) of the univariate survival analyses in the global population (A) and in the ER-/HER2- (B), HER2+ (C), and
ER+/HER2- (D) subgroups of untreated breast cancer patients. All clinical indicators are considered as discrete variables (see Table1) and all modules are considered as
continuous varialbles.
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Interestingly, these molecular subtypes showed differences
in clinical outcomes. Indeed, as shown in Fig. 2, the survival
curve for relapse-free survival of the ER+/HER2- subgroup
was significantly different from the two others (P = 0.03 for
ER-/HER2- and P = 0.003 for HER2+). However, no difference
in survival was noticed between the ER-/HER2- and HER2+
subgroups (P = 0.56).
Prognostic value of the gene expression module scores according

to breast cancer subgroups based on the ER and HER2 module
scores. We also analyzed the prognostic value of the gene
expression modules and currently used clinicopathologic
parameters according to the breast cancer subgroups defined
above.
Interestingly, in the high-risk ER-/HER2- subpopulation

(n = 189), only the immune response module showed a
significant association with clinical outcome in both univariate

and multivariate analyses {HR, 0.70 [95% confidence interval
(95% CI), 0.50-0.98]; P = 0.04; Figs. 3 and 4; Supplementary
Table S3}.
In the ER+/HER2- subpopulation (n = 628), age, tumor size,

and histologic grade were associated with relapse-free survival,
together with the HER2, proliferation, and angiogenesis
modules. In multivariate analysis, only the proliferation
module [HR, 2.68 (95% CI, 2.02-3.55); P = 9 � 10-12] and
histologic grade [HR, 2.00 (95% CI, 1.18-3.37); P = 0.01]
remained significant, with the proliferation module having the
highest HR and the most significant P value.
In the HER2+ tumors (n = 129), nodal status, tumor

invasion, angiogenesis, and immune response module scores
were significantly associated with relapse-free survival in the
univariate model, whereas only tumor invasion [HR, 2.07
(95% CI, 1.32-3.25); P = 0.001] and immune response [HR,

Fig. 4. Kaplan-Meier curves of the module scores that were significant in the univariate analysis in the molecular subgroup analysis. The module scores were split according
to their 33% and 66% quantiles: STAT1module in the ER-/HER2- subgroup (A), PLAUmodule in the HER2+ subgroup (B), STAT1module in the HER2+ module (C), and
AURKA module in the ER+/HER2- subgroup (D).
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0.56 (95% CI, 0.36-0.86); P = 0.009] modules remained
significantly associated with relapse-free survival in the
multivariate model.
Dissecting prognostic gene expression signatures using gene

expression modules. To gain further insight into the biological
significance of individual genes included in several published
gene prognostic signatures (1–10), we investigated their
correlation with our gene expression module prototypes.
Supplementary Table S4 illustrates the percentage of genes of
each signature related to or specifically associated (value in
brackets) with a chosen prototype. Our analysis showed that
more than half of the genes in each signature investigated in
this study were related to the proliferation prototype. Moreover,
the highest percentages of specific association (i.e., association
with one prototype but not with the others) were also reported
for AURKA, highlighting the importance of proliferation genes
in several prognostic signatures.
Evaluating the effect of the prognostic signatures according to

different breast cancer subgroups. We also examined the
prognostic performance of several previously published gene
prognostic signatures (1–10) according to different breast
cancer subgroups based on the ER and HER2 gene expression
module scores. Because the exact algorithms for generating the
different gene signatures cannot be applied on different
microarray platforms, we computed these signatures using the
direction of the association reported in the respective original
publications. Concerned that a signed average might be less
efficient than the original algorithm used for the development
of these prognostic signatures, we performed comparison
studies and found that the original and modified scores were
highly correlated with similar performances (see Supplementa-
ry data for details).
Intriguingly, as shown in Table 2, all seven prognostic

signatures tested in this study were highly informative with
regard to discriminating good versus poor clinical outcome
patients in the ER+/HER2- subgroup only, whereas they were
much less informative for the ER-/HER2- and HER2+ subgroups.

Discussion

To reveal the thread connecting molecular subtyping, gene
expression prognostic signatures, and conventional clinico-
pathologic prognostic factors, we introduced the concept of

gene expression modules (comprehensive lists of genes with
highly correlated expression) associated with key biological
processes in breast cancer tumorigenesis. Wishing to extend our
previous results on the genomic grade signature (7), capturing
mainly proliferation, we added into the model several other
expression modules representing key biological processes in
breast cancer such as proliferation, tumor invasion, immune
response, angiogenesis, apoptosis, and estrogen and HER2
signaling.
In this study, we showed that these modules contain distinct

prognostic information according to different breast cancer
subtypes based on ER and HER2 module scores, and we
highlighted the importance of proliferation-related genes in
predicting clinical outcome in breast cancer. Furthermore, we
showed that several previously published gene expression
prognostic signatures discriminate poor versus good clinical
outcome patients in the ER+/HER2- subtype only.
In the ER+/HER2- subgroup, proliferation module and

histologic grade were the two variables that remained associ-
ated with survival in the multivariate analysis, with the
proliferation module having the most significant P value. This
is consistent with our finding that two clinically distinct ER-
positive molecular subgroups can be defined by genomic grade,
which captures mainly proliferation (24).
In the HER2+ subgroup, tumor invasion and immune

response seemed to be the main processes associated with
poor clinical outcome. This finding supports the recent report
by Urban et al. (27), which highlighted that mRNA expression
of PLAU was a powerful prognostic indicator in HER2-positive
tumors.
In the ER-/HER2- subgroup, only immune response seemed

to predict prognosis. It has been reported that tumors that do
not express the hormone receptors and ERBB2, commonly
called the ‘‘triple-negative’’ or ‘‘basal-like’’ tumors, are more
aggressive. Given their triple negative status, these patients
cannot be treated with the conventional targeted therapies
currently available for breast cancer, such as endocrine or
ERBB2 therapies, leaving chemotherapy as the only option.
In this context, several authors have suggested that chemo-

therapy might be the most efficient in this disease subtype
(28, 29). However, defining the optimal chemotherapy
regimen remains controversial. Because BRCA1 pathway
activity seems to be impaired in many of these tumors and

Table 2. Univariate analysis of different gene classifiers per molecular subgroup of untreated breast cancer
patients

ER-/HER2- HER2+ ER+/HER2-

HR (95% CI) P No. patients HR (95% CI) P No. patients HR (95% CI) P No. patients

GENE70 1.12 (0.73-1.72) 0.60 154 1.29 (0.75-2.20) 0.36 120 2.11 (1.67-2.66) 3 � 10-10 566
GENE76 1.30 (0.78-2.15) 0.32 99 0.81 (0.49-1.34) 0.42 85 1.52 (1.24-1.88) 2 � 10-5 422
P53 1.01 (0.42-2.42) 0.98 163 1.04 (0.51-2.11) 0.92 126 2.23 (1.64-3.03) 4 � 10-7 605
WOUND 0.90 (0.65-1.26) 0.54 160 1.24 (0.79-1.93) 0.35 126 1.48 (1.25-1.75) 5 � 10-6 598
GGI 0.78 (0.44-1.36) 0.38 165 0.79 (0.40-1.53) 0.48 126 3.16 (2.46-4.06) 2 � 10-19 598
ONCOTYPE 0.86 (0.36-2.08) 0.74 156 1.00 (0.50-2.02) 1.00 126 4.79 (3.43-6.68) 3 � 10-20 605
IGS 1.08 (0.73-1.61) 0.70 169 0.96 (0.63-1.46) 0.85 126 2.12 (1.73-2.60) 6 � 10-13 605

NOTE: All signatures are considered here as continuous variables. GENE70, 70-gene signature (1, 2); GENE76, 76-gene signature (3, 4); P53,
p53 signature (9); WOUND, Wound response signature (5, 6); GGI, Genomic Grade Index (7); ONCOTYPE, 21-gene Recurrence Score (8); IGS,
186-gene ‘‘invasiveness’’ gene signature (10).
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because BRCA1 functions in DNA repair and cell cycle
checkpoints, some authors have suggested that these tumors
might be associated with sensitivity to DNA-damaging chemo-
therapy and with resistance to spindle poisons (30).
In this study, we showed that in this triple-negative subgroup

of patients, impaired immune response might be linked with
the development of distant metastases. Indeed, high expression
levels of the immune module were associated with a
significantly better outcome, both at the univariate and
multivariate levels. Interestingly, Teschendorff et al. (31)
recently published similar findings.
It has been shown that signal transducer and activator of

transcription 1 (STAT1) is particularly important in activating
IFN-g and its antitumor effects. In addition to inhibiting
proliferation and survival, IFN-g enhances the immunogenicity
of tumor cells, in part, by enhancing the STAT1-dependent
expression of MHC proteins (32). Based on this observation
and the fact that an attenuated STAT1 signaling in tumors
might be correlated with their malignant behavior, Lynch et al.
(33) recently postulated that enhancing gene transcription
mediated by STAT1 may be an effective approach to cancer
therapy. They screened 5,120 compounds and identified one
molecule, 2-(1,8-naphthyridin-2-yl)phenol, which enhanced
STAT1-mediated gene activation more so than seen with a
maximally efficacious concentration of IFN. Because STAT1
activation seems to play an important role in the killing of
tumor cells in response to cytotoxic agents through repression
of prosurvival genes and activation of apoptosis genes, it may
be particularly important for patients receiving chemotherapy
and particularly for these ER-/HER2- patients for whom most
therapeutic approaches rely on cytotoxic agents that induce cell
death in a nonspecific manner.
Our study also highlighted that proliferation-related genes

are the main and common denominator for predicting
clinical outcome of several previously published gene
expression signatures. Because defects in cell cycle deregula-
tion are a fundamental characteristic of breast cancer, it is
not surprising that these genes are involved in breast cancer
prognosis. Several studies have indeed shown that increased
expression of cell-cycle- and proliferation-associated genes
was correlated with poor outcome (reviewed in ref. 34).
There are of course differences in the exact proliferation-
associated genes due to the difference in population analyzed
or platform used. Although the use of proliferation-associated
cell markers is not new (the protein expression levels of Ki67
and proliferating cell nuclear antigen have already been used

as prognostic markers for decades), gene expression profiling
studies suggest that measuring proliferation with a more
objective, automated, and quantitative assay may be more
robust than less quantitative assays such as immunohisto-
chemistry.
Interestingly, we have also shown that the prognostic abilities

of several prognostic gene signatures differ according to the
breast cancer subtypes. Indeed, we showed that their prognostic
discriminative power was limited essentially to the ER+/HER2-
molecular subgroup composed of ER-positive patients only.
This concurs with our findings that (a) proliferation seems to
be the main contributor of these signatures and (b) the ER+/
HER2- subgroup is the only molecular subgroup that displays a
wide range of proliferation values. However, Ma et al. (35)
recently showed that their two-gene ratio HOXB13/IL17BR
provided prognostic information in ER+ breast cancer patients
in addition to and independent of the tumor grade, suggesting
that a biological process other than proliferation might be
associated with prognosis in that particular subgroup of
patients.
These findings thus emphasize the need for additional

prognostic markers for the other two molecular subgroups,
and more specifically for the ER-/HER2- subgroup, which is
associated with poor prognosis and limited therapeutic
options. Therefore, we strongly believe that studying the
immune response mechanisms in this particular subgroup of
patients might help to better understand these tumors and to
develop efficient novel targeted therapies.
To conclude, by identifying gene expression modules

representing key biological mechanisms involved in breast
cancer, we were able to better characterize the biological
foundation of various prognostic signatures and to understand
the mechanisms that trigger the tumors of different subgroups
to progress. These findings may help to define new clinicoge-
nomic models and identify new targets in the molecular
subgroups to further advance toward truly personalized
medicine.
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