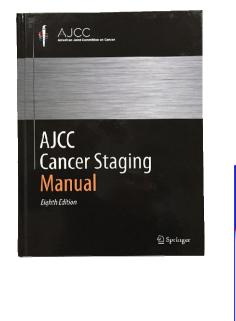
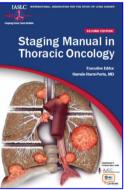
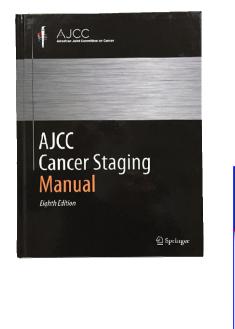
How VIII Edition TNM Affects Lung Cancer Management

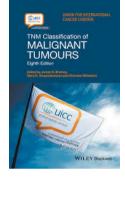

Ramón Rami-Porta Thoracic Surgery Service Hospital Unversitari Mútua Terrassa Terrassa, Barcelona, Spain

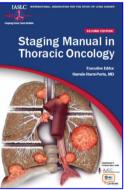

No conflicts of interest to declare

Content

- 1. Database for the 8th edition
- 2. Innovations and clinical implications
- 3. Towards the 9th edition
- 4. Summary
- 5. Conclusions

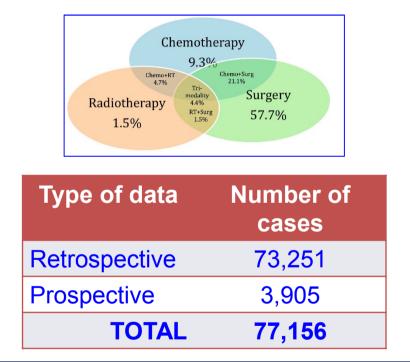





Content

1. Database for the 8th edition

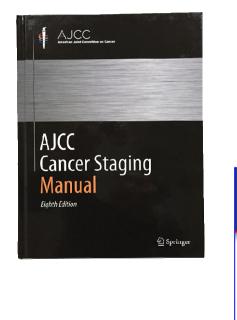
- 2. Innovations and clinical implications
- 3. Towards the 9th edition
- 4. Summary
- 5. Conclusions



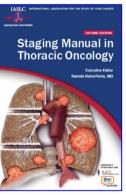
DATABASE FOR THE 8TH EDITION

Region	Number	%
Europe	46,560	49
Asia	41,705	44
North America	4,660	5
Australia	1,593	1.7
South America	190	0.3
TOTAL	94,708	100

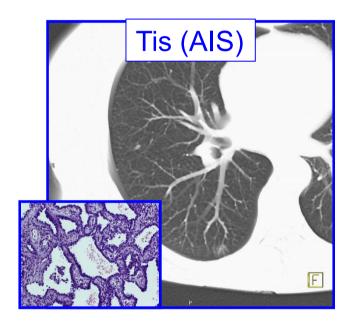
Rami-Porta R et al. J Thorac Oncol 2014; 9: 1618-1624



IASLC Staging and Prognostic Factors Committee 2009-2016. Vienna 2016

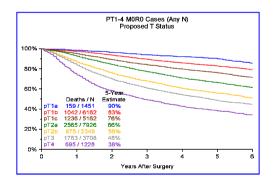


Content


- 1. Database for the 8th edition
- 2. Innovations and clinical implications
- 3. Towards the 9th edition
- 4. Summary
- 5. Conclusions

Newcomers into the system

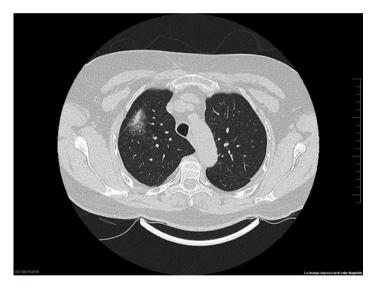
Travis W et al. J Thorac Oncol 2016; 11: 1204-1223.


T1mi

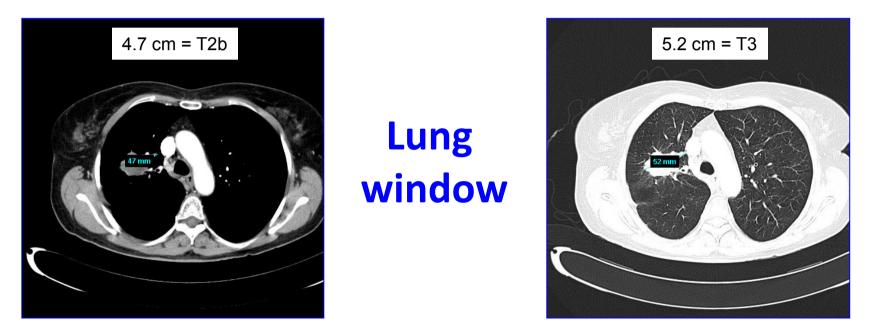
New T categories based on tumour size and other descriptors

Descriptor	Category
= 1 cm</td <td>T1a</td>	T1a
>1-2 cm	T1b
>2-3 cm	T1c
>3-4 cm	T2a
>4-5 cm	T2b
>5-7 cm	Т3
>7 cm	T4

Rami-Porta R et al. J Thorac Oncol 2015; 10: 990-1003.


Descriptor	Category
Bronchus < 2 cm	T2
Total atelectasis	T2
Diaphragm	T4

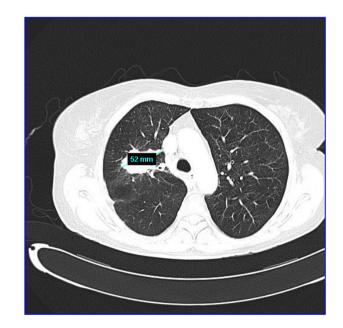
Size of part-solid non-mucinous adenocarcinoma

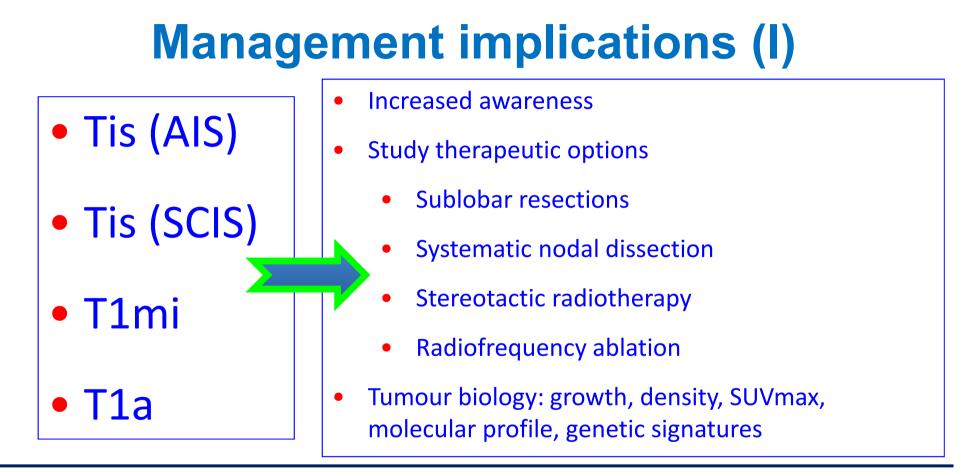

Clinical size: size of **solid component**

Pathologic size: size of **invasive component**

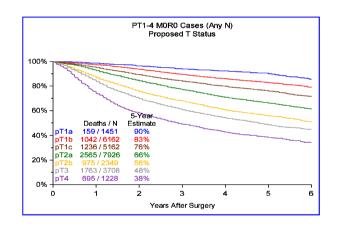
Travis W et al. J Thorac Oncol 2016; 11: 1204-1223.

Measurement of solid tumour size

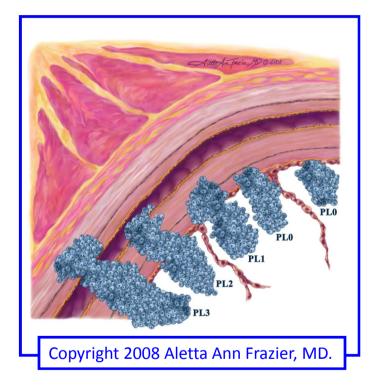

Travis W et al. J Thorac Oncol 2016; 11: 1204-1223.

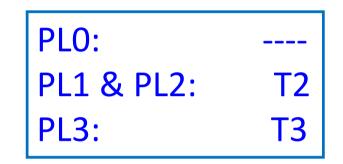

Measurement of tumour size after induction therapy

Multiply the percentage of viable cells by the total tumour size


In this case there was complete pathologic response. So, 0% x 52mm= 0. **ypT0**

Travis W et al. J Thorac Oncol 2016; 11: 1204-1223.



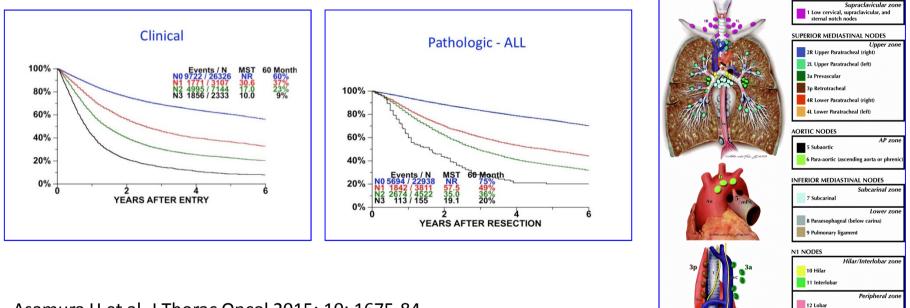

Management implications (II)

- Every cm counts; careful follow-up
- Accurate tumour size measurement, important
- Worse prognosis of larger tumours
- Better prognosis for endobronchial location and total atelectasis and pneumonitis
- Prognosis refinement
- Better stratification for clinical trials

Visceral pleura invasion

Elastic stains are recommended to identify visceral pleura invasion

Travis WD et al. J Thorac Oncol 2008; 3: 1384-1390

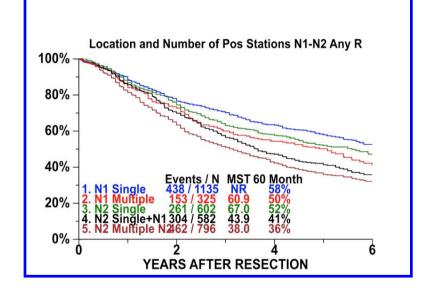

Importance of elastic stains

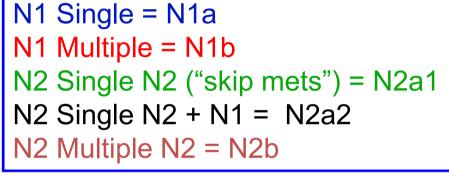
Apparent Stage I	# of cases	VPI, n (%) Elastic stains
Adenocarcinoma	46	8 (17%)
BAC	15	0 (0%)
Squamous	31	8 (26%)
Large cell	7	2 (29%)
Adenosquamous	1	1 (100%)
Total	100	19 (19%)

Use of elastic stains: 49 pathologists: never 25 (51%), some times 14 (29%), always 10 (20%)

Taube JM et al. Am J Surg Pathol 2007; 31: 953-956

The N component



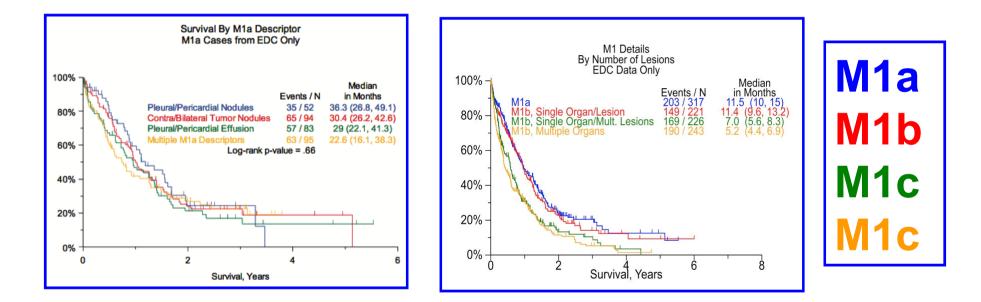

Asamura H et al. J Thorac Oncol 2015; 10: 1675-84. Rusch V et al. J Thorac Oncol 2009; 4: 568-577.

TOP THORACIC ONCOLOGY PADOVA, Padova, Italy, 29th and 30th March, 2019

13 Segmental 14 Subsegmental

Quantification of nodal disease

Asamura H et al. J Thorac Oncol 2015; 10: 1675-84.


Management implications (III)

N1 Single = N1a N1 Multiple = N1b N2 Single N2 ("skip mets") = N2a1 N2 Single N2 + N1 = N2a2 N2 Multiple N2 = N2b

Asamura H et al. J Thorac Oncol 2015; 10: 1675-84.

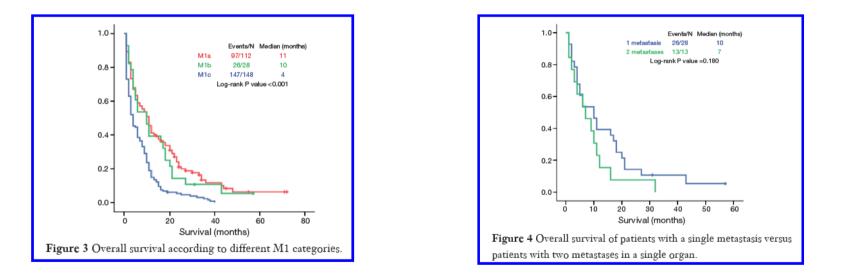
- The amount of nodal disease has prognostic impact
- Upfront resection for single station cN2 will be discussed
- Prognosis refinement
- Better stratification

The M component

Eberhardt W et al. J Thorac Oncol 2015; 10: 1515-1522.

Management implications (IV)

M1a
M1b
M1c
M1c

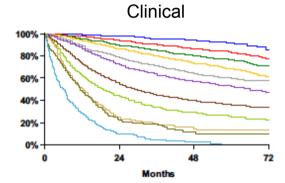

- Number of M1s is more important than their location
- M1b: baseline definition of oligometastases and oligoprogression
- Prognosis refinement
- Better stratification

Prognostic impact of M descriptors of the 8th edition of TNM classification of lung cancer

J Thorac Dis 2017;9(3):685-691

Margarida Dias, Ana Antunes, Sérgio Campainha, Sara Conde, Ana Barroso

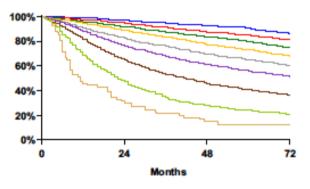
Pulmonology Department, Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal



Stage grouping

	N0	N1	N2	N3	M1a any N	M1b any N	M1c any N
T1a	IA1	IIB	IIIA	IIIB	IVA	IVA	IVB
T1b	IA2	IIB	IIIA	IIIB	IVA	IVA	IVB
T1c	IA3	IIB	IIIA	IIIB	IVA	IVA	IVB
T2a	IB	IIB	IIIA	IIIB	IVA	IVA	IVB
T2b	IIA	IIB	IIIA	IIIB	IVA	IVA	IVB
Т3	IIB	IIIA	IIIB	IIIC	IVA	IVA	IVB
T4	IIIA	IIIA	IIIB	IIIC	IVA	IVA	IVB

Goldstraw P et al. J Thorac Oncol 2016; 11: 39-51.


8th edition stage grouping

			24	60
Proposed	Events / N	MST	Month	Month
IA1	68/781	NR	97%	92%
IA2	505/3105	NR	94%	83%
IA3	546/2417	NR	90%	77%
IB	560/1928	NR	87%	68%
IIA	215/585	NR	79%	60%
IIB	605/1453	66.0	72%	53%
IIIA	2052/3200	29.3	55%	36%
IIIB	1551/2140	19.0	44%	26%
IIIC	831/986	12.6	24%	13%
IVA	336/484	11.5	23%	10%
IVB	328/398	6.0	10%	0%

Goldstraw P et al. J Thorac Oncol 2016; 11: 39-51.

Pathologic

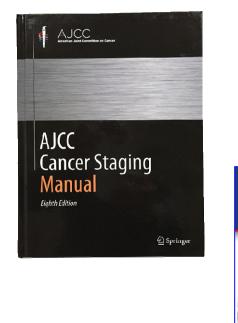
			24	60
Proposed	Events / N	MST	Month	Month
IA1	139 / 1389	NR	97%	90%
IA2	823 / 5633	NR	94%	85%
IA3	875 / 4401	NR	92%	80%
IB	1618 / 6095	NR	89%	73%
IIA	556 / 1638	NR	82%	65%
IIB	2175 / 5226	NR	76%	56%
IIIA	3219 / 5756	41.9	65%	41%
IIIB	1215 / 1729	22.0	47%	24%
IIIC	55/69	11.0	30%	12%

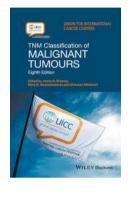
Does a change in stage mean a change in therapy?

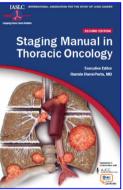
Does a change in stage mean a change in therapy?

Should the 7th Edition of the Lung Cancer Stage Classification System Change Treatment Algorithms in Non-small Cell Lung Cancer?				
Daniel J. Boffa, MD,* Frank C. Detterbeck, MD,* John Crowley, PhD,§ Daniel Zelterman, PhD, and Peter Goldstr	¶ Lynn Tanoue, MD, Anthon			
	Key Words: Lung cancer, Staging, T	reatment.		
Introduction: Approximately 10 to 15% of non-small cell lung cancer patients will be assigned a stage classification according to the 7th	(J Thorac Oncol. 2010;5: 1779–1783))		
		Ann Surg Oncol (2011) 18:1–3 DOI 10.1245/s10434-010-1427-z EDITORIAL		Annals of SURGICAL ONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY
Reacting to Cha of the AJCC Sta Daniel J. Boffa, MD ¹ and			ging Manual Frederick L. Greene, MD ² gery, Yale University School of Medic	ations in the 7th Edition cine, New Haven, CT; ² Department of General Surgery,

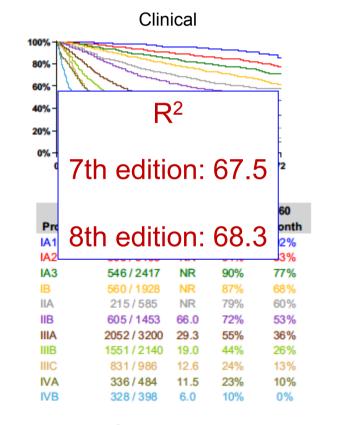
Lung cancers with multiple lesions


- Multiple primary tumours:
 One TNM for each tumour
- 2. Separate tumour nodules:•T3, T4, M1a
- **3.** Multiple adenos with GGO/lepidic features:
 - Highest T (#/m) N M
- 4. Pneumonic type adenocarcinoma:•T3, T4, M1a




Detterbeck F et al. J Thorac Oncol 2016; 11 (5): 639-650 651-665 666-680 681-692

Content


- 1. Database for the 8th edition
- 2. Innovations and clinical implications
- 3. Towards the 9th edition
- 4. Summary
- 5. Conclusions

8th edition stage grouping

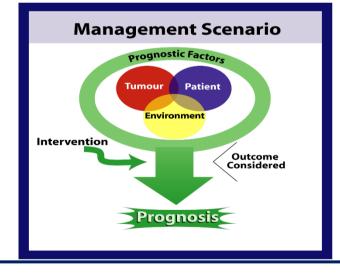
Goldstraw P et al. J Thorac Oncol 2016; 11: 39-51.

Pathologic 100% 80% 60% \mathbb{R}^2 40%-20% 7th edition: 45.7 0% 72 8th edition: 46.9 60 Month 139 / 1389 97% 90% IA1 NR 85% IA2 NR 94% 823 / 5633 IA3 875/4401 NR 92% 80% 1618 / 6095 73% IB NR 89% IIA 556 / 1638 NR 82% 65% 2175/5226 NR 76% 56% IIB IIIA 3219 / 5756 41.9 65% 41% IIIB 22.0 47% 24% 1215 / 1729 55/6911.0 30% 12%

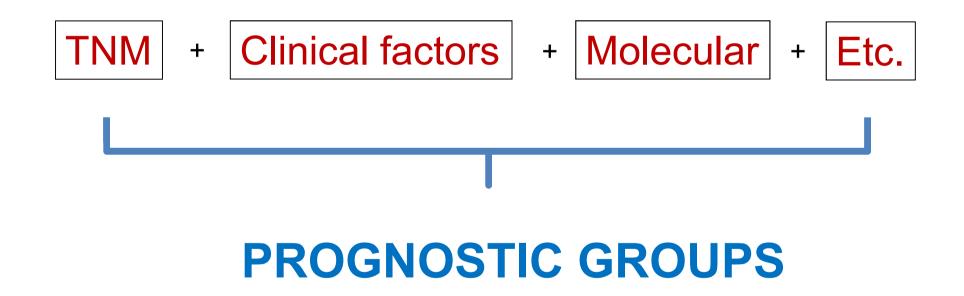
For the 9th edition...

DO NOT expect:

M1a: Separate tumour nodule(s) in a contralateral lobe; tumour with pleural or pericardial nodules or malignant pleural or pericardial effusions and EGFR status


*

This would be **mixing** different parameters


For the 9th edition...

But TNM can be **combined** with other parameters to build


PROGNOSTIC GROUPS

For the 9th edition...

IASLC Lung Cancer Staging Project: 9th Edition Database Implementation in Electronic Data Capture System

IASLC Lung Cancer Staging Project: 9th Edition Database Biomarkers Section

Genetic Biomarkers

Genetic Biomarkers for this Subject

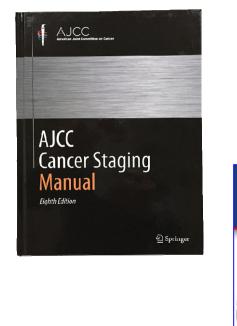
Date Assessed	Type of Sample	Total mutational burden	Gene	Platform	DNA Variant
12-JUN-2017	Biopsy		ASXL1	Sanger	
13-JUN-2017	Plasma	55			
15-JUN-2017	Plasma		FGFR4	FISH	FGFR4 Mutation

IASLC Lung Cancer Staging Project: 9th Edition Database Biomarkers Section Copy Number Alterations

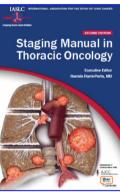
CNA Biomarkers for this Subject

CNA	Date Assess	Type o ed Sampl		Average Gene Copy Number
CCND1 11q13 AMP	12-JUN-2017	Biopsy	OncoScan	42
FOXA1 14q21.1 AMP	15-JUN-2017	Plasma	FISH	38
CNA	Date Assessed	Genotype	Average Gene: Centromere Rati	Centromere o Copy Number
CCND1 11q13 AMP	12-JUN-2017	Homozygous	19.27%	40
FOXA1 14q21.1 AMP	15-JUN-2017	Heterozygous	24.65%	24

IASLC Lung Cancer Staging Project: 9th Edition Database Biomarkers Section

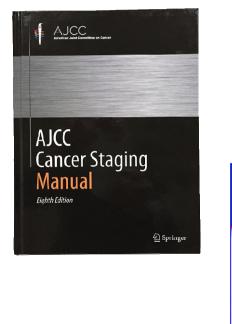

Protein Alterations

Protein Alterations for this Subject


		Type of			% Tumor	% Immu	ne
Protein	Date Assessed	Sample	Platform	Antibody	Cells	Cells	H-Score
PD-L1	12-JUN-2017	Biopsy	Mass Spectrometry	DAKO 28-8	36	45	121
ALK	15-JUN-2017	Plasma	IHC	Dako ALK1	32	42	181

Content

- 1. Database for the 8th edition
- 2. Innovations and clinical implications
- 3. Towards the 9th edition
- 4. Summary
- 5. Conclusions



Summary

- More relevance to tumour size
- Reclassification of some T descriptors
- Validation of present N descriptors
- Acknowledgement of relevance of quantification of nodal disease
- Three metastatic groups
- More stages for better prognostic stratification
- More recommendations for uniform staging
- TNM as an important component of prognostic groups in 9th ed.

Content

- 1. Database for the 8th edition
- 2. Innovations and clinical implications
- 3. Towards the 9th edition
- 4. Summary
- 5. Conclusions

<text><text><section-header><section-header>

Conclusions

- The 8th edition TNM for lung cancer implies changes in management, but not necessarily in treatment
- New tumours, relevance of tumour size, quantification of nodal disease, and number of extrathoracic metastases require precise determination and strict assessment
- The 9th edition may increase our capacity for a more individualized prognosis

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Join us in Barcelona for the 20th V

SEPTEMBER 7-10, 2019

@IASLC facebook.com/IASLC

iaslc.lung

0

RAMON RAMI-PORTA CONFERENCE CO-PRESIDENTS

ENRIQUETA FELIP | ANTONI ROSELL

CONFERENCE PRESIDENT

IASLC 20th World Conference on Lung Cancer SEPTEMBER 7-10, 2019 BARCELONA, SPAIN

IASLC.ORG