### South Breast Journal Club

L'IMPORTANZA DELLA RICERCA IN ONCOLOGIA

THE

EDITION

OXFORD DEBATE

### THE OXFORD DEBATE EDITION

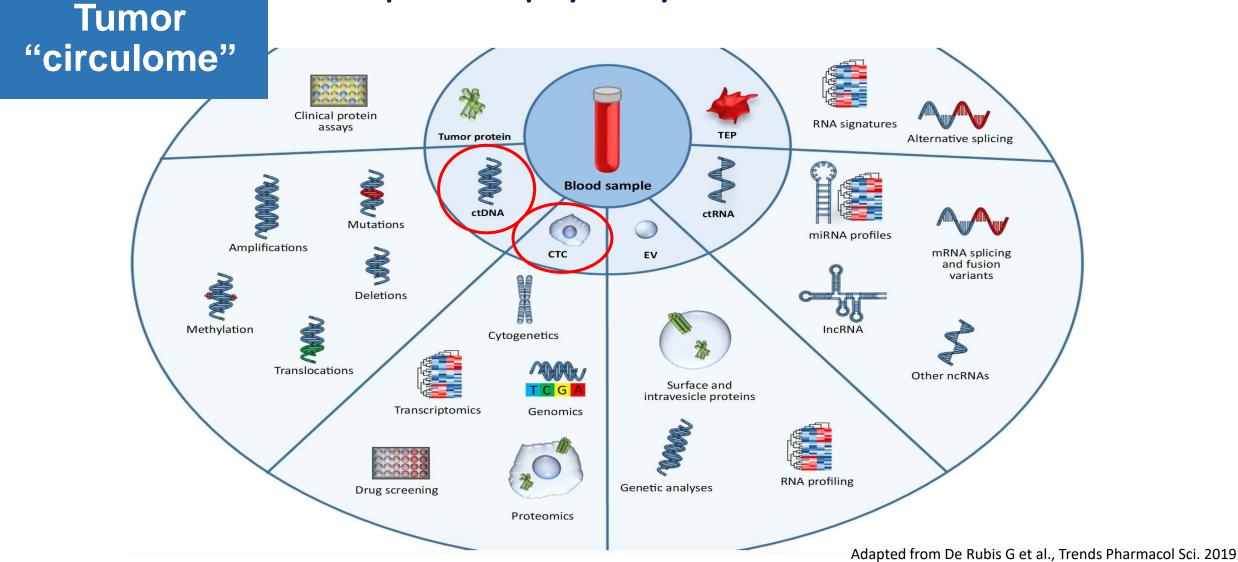
20 - 21 APRILE

2023 ROM

THE HIVE HOTEL

Via Torino 6

OXFORD DEBATE Biopsia liquida: siamo pronti per un uso clinico Contro


#### **Dott. Giuseppe Buono**

UOSD Ricerca Clinica e Traslazionale in Senologia

IRCCS Istituto Nazionale Tumori

"Fondazione G.Pascale"

### Liquid biopsy: beyond ctDNA



THE

**EDITION** 

breast

ourna

L'IMPORTANZA DELLA RICERCA IN ONCOLOGIA

20 - 21 APRILE **OXFORD DEBATE** 2023 ROMA HE HIVE HOTEL Via Torino, 6 Cancer Treatment Reviews 73 (2019) 73-83

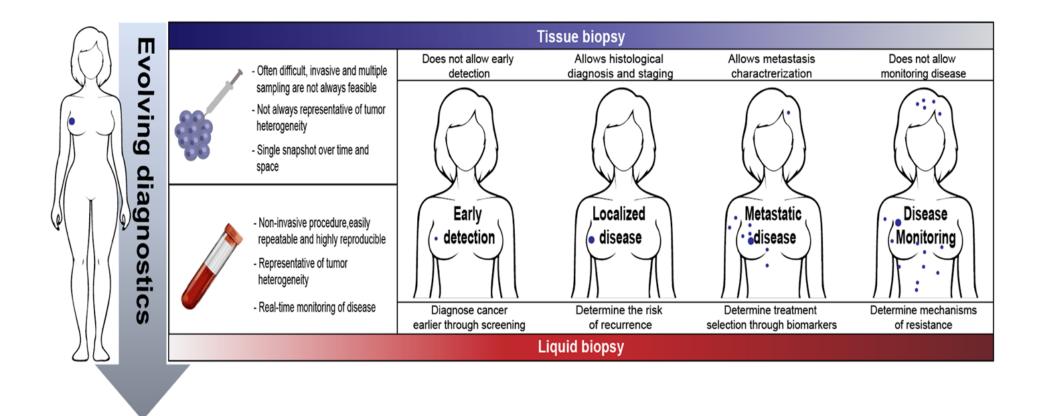


Contents lists available at ScienceDirect

**Cancer Treatment Reviews** 

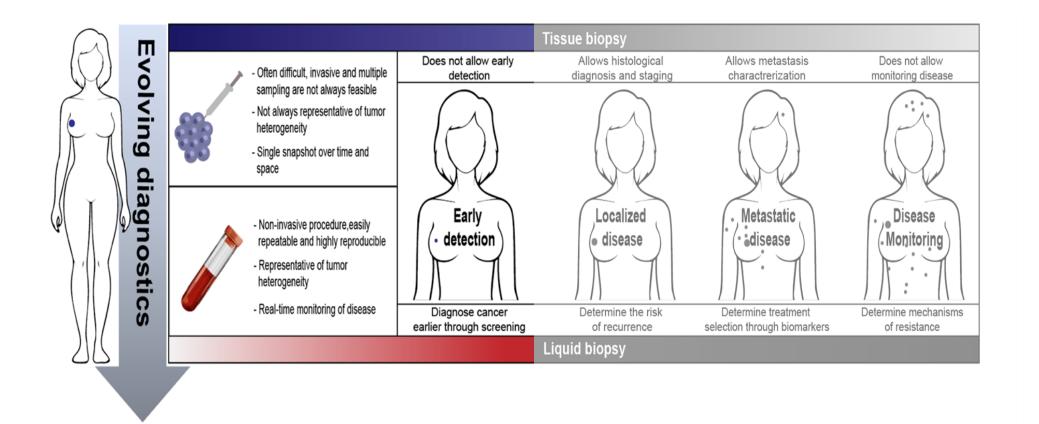
journal homepage: www.elsevier.com/locate/ctrv




Hot Topic

#### Circulating tumor DNA analysis in breast cancer: Is it ready for prime-time?




Giuseppe Buono<sup>a,1</sup>, Lorenzo Gerratana<sup>b,c,1,\*</sup>, Michela Bulfoni<sup>d</sup>, Nicoletta Provinciali<sup>e</sup>, Debora Basile<sup>b</sup>, Mario Giuliano<sup>a,f</sup>, Carla Corvaja<sup>b</sup>, Grazia Arpino<sup>a</sup>, Lucia Del Mastro<sup>g</sup>, Sabino De Placido<sup>a</sup>, Michele De Laurentiis<sup>h</sup>, Massimo Cristofanilli<sup>c,2</sup>, Fabio Puglisi<sup>b,i,2</sup>





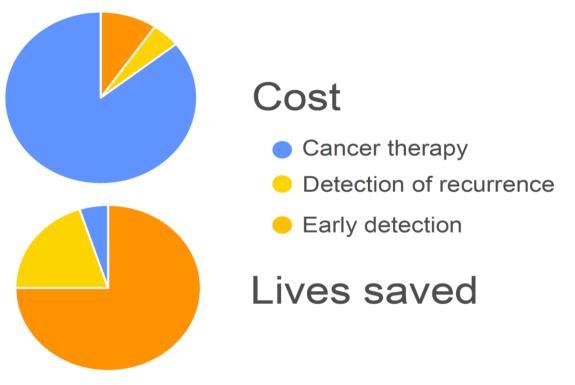
.





.




### Early detection save lives and is cost-effective

Early detection can save 4-6 million lives per year

#### RELATIVE 5 YEAR CANCER SURVIVAL RATES

| Cancer<br>Type | Late<br>Detection | Early<br>Detection |
|----------------|-------------------|--------------------|
| Breast         | 27%               | 99%                |
| Colorectal     | 14%               | 90%                |
| Lung           | 5%                | 56%                |
| Ovary          | 29%               | 92%                |
| Stomach        | 5%                | 68%                |

Economic savings of early detection could be \$100-1,000 Bn



Mariotto et al, 2011; Bradely et al, 2008; Yabroff et al, 2011; Blumen et al, 2016; WHO, 2014. G. Meijer et al., unpublished.

# Criteria for successful Screening Test

- Very Safe
- Acceptable to subjects and providers
- Simple and inexpensive
- Cost-effective
- Reliable (repeatability, reducibility, precision)
- Valid (sensitivity specificity)
- Exit strategy (facilities for diagnosis an appropriate treatments should be available for positive subjects)



# Criteria for successful Screening Test

- Very Safe
- Acceptable to subjects and providers
- Simple and inexpensive
- Cost-effective
- Reliable (repeatability, reducibility, precision)
- Valid (sensitivity specificity)
- Exit strategy (facilities for diagnosis an appropriate treatments should be available for positive subjects)



#### What should be the maximum-price of LB to be cost-effective?

| Model                                    | Inputs         |                          | Outcon          | nes per 1000 Women S | Screened over Their L | ifetime                  |                       |
|------------------------------------------|----------------|--------------------------|-----------------|----------------------|-----------------------|--------------------------|-----------------------|
| Combined<br>Sensitivity <sup>a</sup> , % | Specificity, % | Mortality<br>Reduction % | False Positives | Overdiagnoses        | QALYs-Gained          | Total Costs,<br>USD 1000 | Maximum<br>Price, USD |
|                                          |                |                          | Digital mammogr | aphy (comparator)    |                       |                          |                       |
| 74                                       | 88             | 25.1                     | 913.8           | 18.1                 | 40                    | 7022                     | -                     |
|                                          |                |                          | DCIS d          | etection             |                       |                          |                       |
| 70                                       | 100            | 22.4                     | 0               | 17.7                 | 43                    | 6786                     | 195                   |
| 71                                       | 96             | 23.2                     | 406.3           | 17.8                 | 41                    | 6888                     | 171                   |
| 71                                       | 100            | 23.2                     | 0               | 17.8                 | 44                    | 6796                     | 202                   |
| 73                                       | 96             | 24.2                     | 406.2           | 18.0                 | 42                    | 6899                     | 179                   |
| 73                                       | 100            | 24.2                     | 0               | 18.0                 | 45                    | 6807                     | 210                   |
| 74                                       | 96             | 25.1                     | 406.1           | 18.1                 | 44                    | 6911                     | 186                   |
| 74                                       | 100            | 25.1                     | 0               | 18.1                 | 47                    | 6819                     | 217                   |
| 76                                       | 88             | 26.0                     | 913.6           | 18.2                 | 42                    | 7035                     | 156                   |
| 76                                       | 96             | 26.0                     | 406.0           | 18.2                 | 45                    | 6924                     | 193                   |
| 76                                       | 100            | 26.0                     | 0               | 18.2                 | 48                    | 6832                     | 224                   |
| 78                                       | 88             | 27.1                     | 913.4           | 18.4                 | 43                    | 7050                     | 164                   |
| 78                                       | 96             | 27.1                     | 405.9           | 18.4                 | 47                    | 6939                     | 201                   |
| 78                                       | 100            | 27.1                     | 0               | 18.4                 | 50                    | 6847                     | 232                   |
| 79                                       | 88             | 28.3                     | 913.2           | 18.5                 | 45                    | 7068                     | 173                   |
| 79                                       | 96             | 28.3                     | 405.8           | 18.5                 | 49                    | 6957                     | 210                   |
| 79                                       | 100            | 28.3                     | 0               | 18.5                 | 52                    | 6868                     | 241                   |
|                                          | 100            | 2010                     | _               | detection            | 2                     | 0000                     |                       |
| 67                                       | 100            | 23.1                     | 0               | 1.9                  | 41                    | 6951                     | 161                   |
| 69                                       | 100            | 23.7                     | Ő               | 2.1                  | 42                    | 6964                     | 169                   |
| 71                                       | 100            | 24.8                     | Ő               | 2.2                  | 44                    | 6979                     | 177                   |
| 73                                       | 96             | 26.1                     | 409.2           | 2.4                  | 43                    | 7090                     | 156                   |
| 73                                       | 100            | 26.1                     | 0               | 2.4                  | 46                    | 6998                     | 187                   |
|                                          |                |                          | _               | CIS detection        |                       |                          |                       |
| 90                                       | 88             | 38.4                     | 910             | 20.5                 | 59                    | 7273                     | 235                   |
| 90                                       | 100            | 38.4                     | 0               | 20.5                 | 65                    | 7071                     | 303                   |
|                                          |                |                          |                 | DCIS detection       |                       |                          |                       |
| 87                                       | 88             | 36.6                     | 918             | 4.5                  | 53                    | 7413                     | 183                   |
| 87                                       | 100            | 36.6                     | 0               | 4.5                  | 60                    | 7210                     | 253                   |

#### Van der Poort E. Cancers 2022

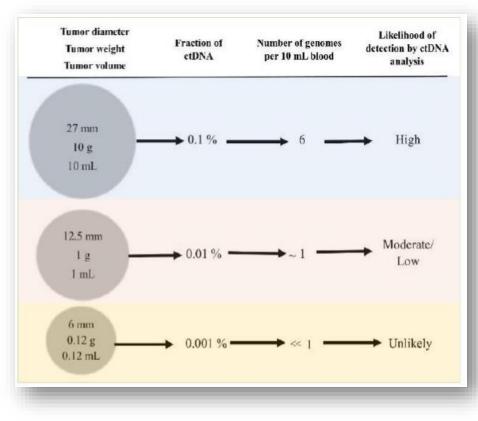
**OXFORD DEBATE EDITION** 

THE

Dreas

#### Mutant allele fraction (MAF) is very low for small tumours

| Tumor<br>Diameter, mm | Tumor Weight,<br>mg | Tumor<br>Volumen mL<br>(cm <sup>3</sup> ) | Number of<br>Cancer Cells | Percentage<br>Fraction of<br>Mutant<br>ctDNA | Number of<br>Cancer<br>Genomes per<br>10 mL of<br>Blood | Chance of<br>Progression <sup>c</sup> | Mammographic<br>Screen<br>Sensitivity <sup>d</sup> |
|-----------------------|---------------------|-------------------------------------------|---------------------------|----------------------------------------------|---------------------------------------------------------|---------------------------------------|----------------------------------------------------|
| 27                    | 10,000              | 10 <sup>a</sup>                           | 10,000,000,000            | 1:1000                                       | 6                                                       | -                                     | -                                                  |
| 12.5                  | 1000                | 1 <sup>b</sup>                            | 1,000,000,000             | 1:10,000                                     | 0.6                                                     | -                                     | -                                                  |
| 10                    | 500                 | 0.5                                       | 500,000,000               | 1:20,000                                     | 0.3                                                     | 50%                                   | 91%                                                |
| 8                     | 250                 | 0.25                                      | 250,000,000               | 1:40,000                                     | 0.15                                                    | 25%                                   | -                                                  |
| 6                     | 125                 | 0.12                                      | 125,000,000               | 1:80,000                                     | < 0.1                                                   | -                                     | -                                                  |
| 5                     | 62                  | 0.06                                      | 62,000,000                | 1:160,000                                    | < 0.1                                                   | 6%                                    | 26%                                                |
| 4                     | 31                  | 0.03                                      | 32,000,000                | 1:320,000                                    | < 0.1                                                   | -                                     | -                                                  |
| 3                     | 16                  | 0.015                                     | 16,000,000                | 1:640,000                                    | < 0.1                                                   | -                                     | -                                                  |
| 2.4                   | 8                   | 0.007                                     | 8,000,000                 | 1:1,300,000                                  | < 0.1                                                   | -                                     | -                                                  |
| 2                     | 4                   | 0.0035                                    | 4,000,000                 | 1:2,600,000                                  | < 0.1                                                   | -                                     | -                                                  |
| 1.5                   | 2                   | 0.0017                                    | 2,000,000                 | 1:5,200,000                                  | < 0.1                                                   | -                                     | -                                                  |
| 1.1                   | 1                   | 0.0008                                    | 1,000,000                 | 1:10,000,000                                 | <0.1                                                    | 0.05%                                 | -                                                  |


ctDNA: circulating tumor DNA. <sup>a</sup> As reported by Abbosh et al. [36]. <sup>b</sup> As reported by Del Monte [37]. <sup>c</sup> As reported by Narod and others [38,39]. <sup>d</sup> As reported by Wedon-Fekjaer et al. [39]. Adapted from ref. [34].

THE

**EDITION** 

**OXFORD DEBATE** 

breast Iourna

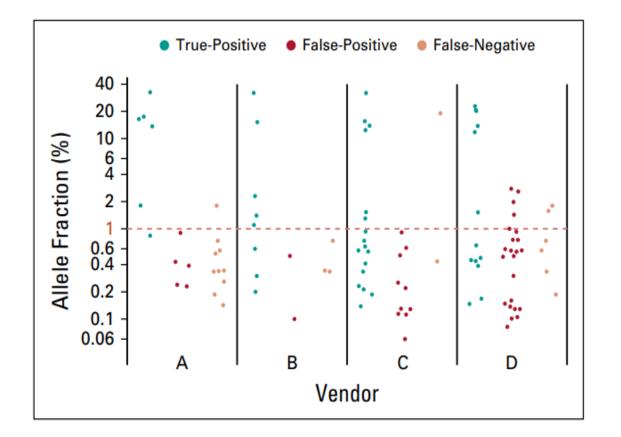


#### Pons-Belda O. Diagnostics 2021

20 - 21 APRILE

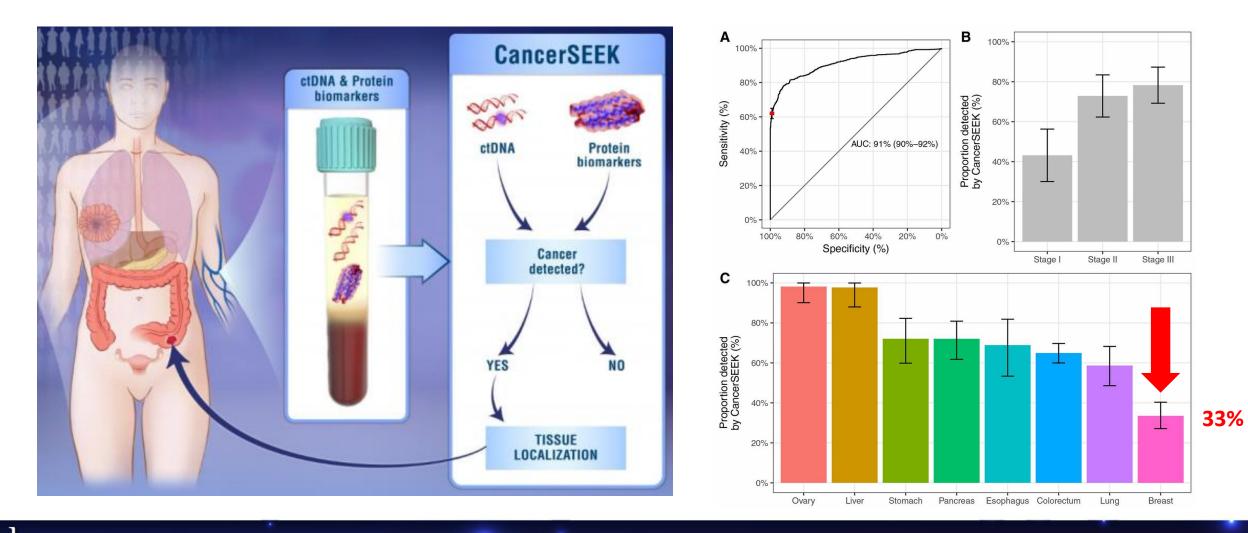
2023 ROMA THE HIVE HOTEL

### The importance of test reproducibility


- 24 matched, tumor-normal pairs with matched plasma from lung, breast, ovary, and prostate cancers
- 4 NGS gene panels assays evaluated
- Substantial variability among the ctDNA assays, with a range of sensitivity (38-89%) and positive predictive value (36-80%), particularly in the detection of allele frequency variants <1%</li>
- Most NGS assay discordance is a result of technical variations

Sensitivity\* (%) Vendor TP FP FN **PPV**<sup>†</sup> (%) 38 6 5 10 55 2 3 73 В 8 80 С 17 10 2 89 63 6 68 13 23 36 D

 TABLE 2.
 Sensitivity and Positive Predictive Value of All Variants


ORD DEBATE

EDITION



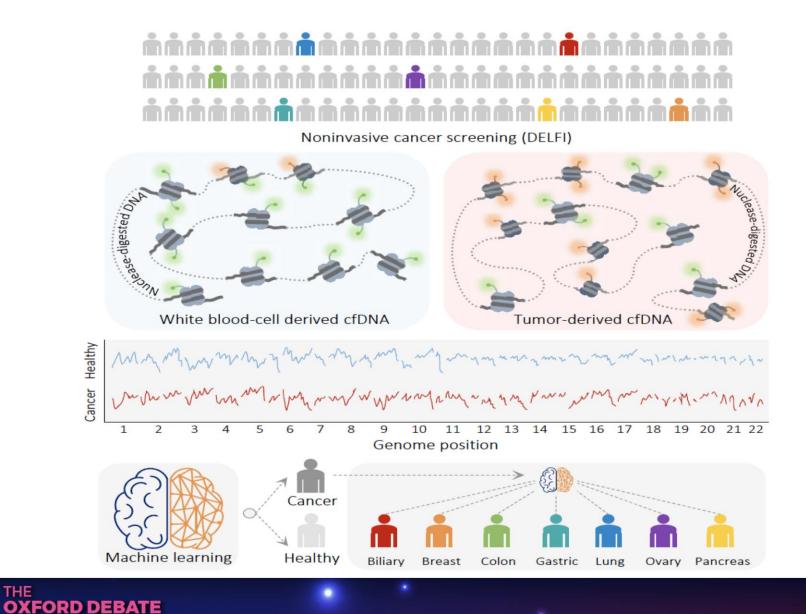
#### Stetson D. JCO Precis Oncol 2019

### CancerSEEK: low sensibility for BC



THE

**EDITION** 


**OXFORD DEBATE** 

breas: Iourna

L'IMPORTANZA DELLA RICERCA IN ONCOLOCI

20 - 21 APRILE 2023 ROMA THE HIVE HOTEL Via Torino, 6

### DNA evaluation of fragments for early detection (DELFI)



THE

**EDITION** 

Dreast ourna

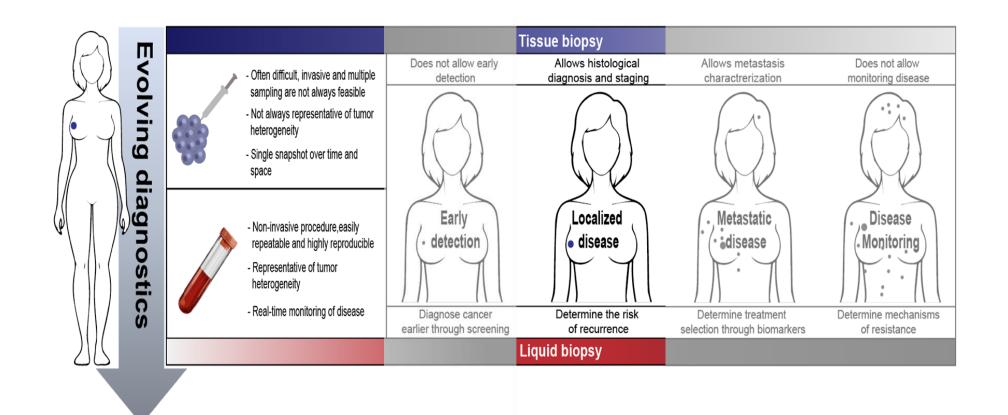
Cristiano, Leal, Phallen, Fiksel, Scharpf et al., Nature, 2019

20 - 21 APRILE

2023 ROMA HE HIVE HOTEL

### DNA evaluation of fragments for early detection (DELFI)

|             |             | Individuals | Sensitivity     |                 |  |  |
|-------------|-------------|-------------|-----------------|-----------------|--|--|
|             |             | analyzed    | 95% specificity | 98% specificity |  |  |
|             | Lung        | 12          | 100%            | 100%            |  |  |
|             | Ovarian     | 28          | 89%             | 89%             |  |  |
| ype         | Bile duct   | 26          | 88%             | 81%             |  |  |
| Cancer type | Gastric     | 27          | 81%             | 81%             |  |  |
| Can         | Colorectal  | 27          | 81%             | 80%             |  |  |
|             | Pancreatic  | 34          | 71%             | 65%             |  |  |
|             | Breast      | 54          | 70%             | 57%             |  |  |
|             | Healthy 215 |             | <5%             | <2%             |  |  |


Cristiano, Leal, Phallen, Fiksel, Scharpf et al., Nature, 2019





### Criteria for successful Screening Test: is Liquid Biopsy ready?

- Very Safe
- Acceptable to subjects and providers
- Simple and inexpensive
- Cost-effective
- Reliable (repeatability, reducibility, precision)
- Valid (sensitivity specificity)
- Exit strategy (facilities for diagnosis an appropriate treatments should be available for positive subjects)

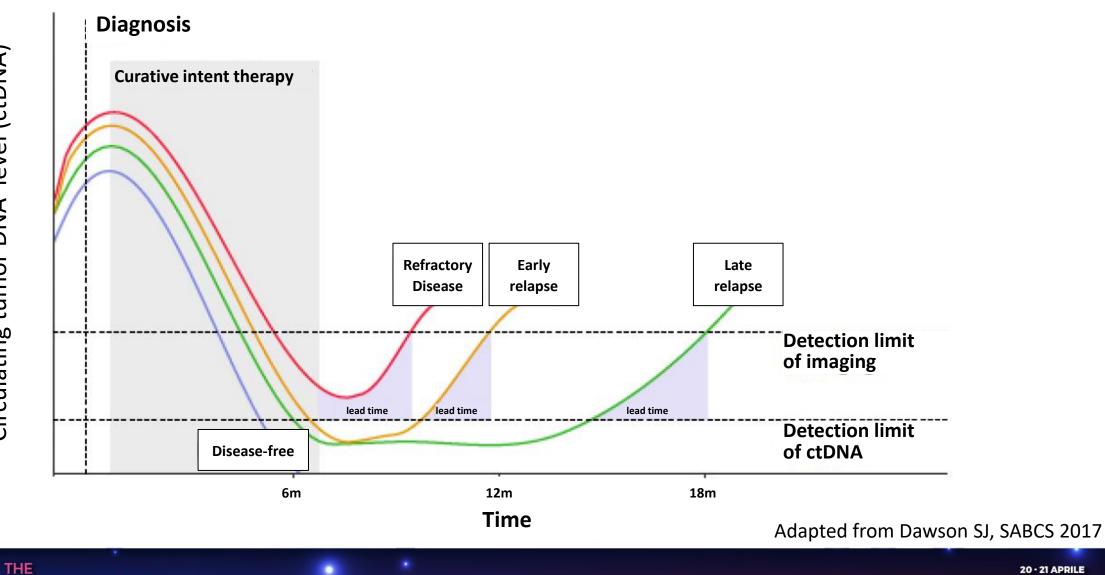


.



20 - 21 APRILE 2023 ROMA THE HIVE HOTEL Via Torino, 6

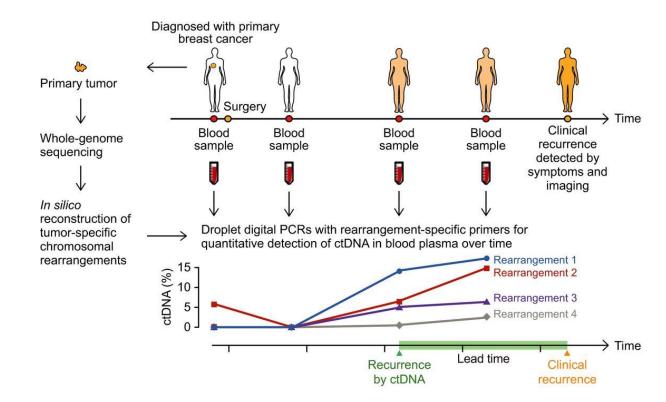
#### Detecting Minimal Residual Disease (MRD)




Dreas:

ourna

**OXFORD DEBATE** 


**EDITION** 

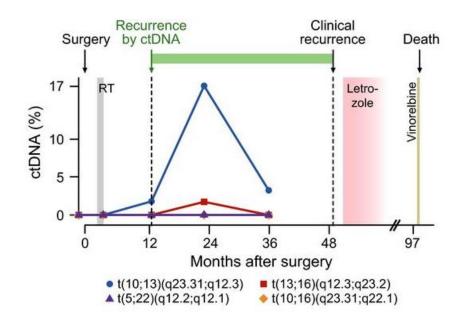


20 - 21 APRILE 2023 ROMA THE HIVE HOTEL Via Torino, 6

# Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease

Eleonor Olsson, Christof Winter, Anthony George, Yilun Chen, Jillian Howlin, Man-Hung Eric Tang, Malin Dahlgren, Ralph Schulz, Dorthe Grabau, Danielle van Westen, Mårten Fernö, Christian Ingvar, Carsten Rose, Pär-Ola Bendahl, Lisa Rydén, Åke Borg, Sofia K Gruvberger-Saal, Helena Jernström & Lao H Saal



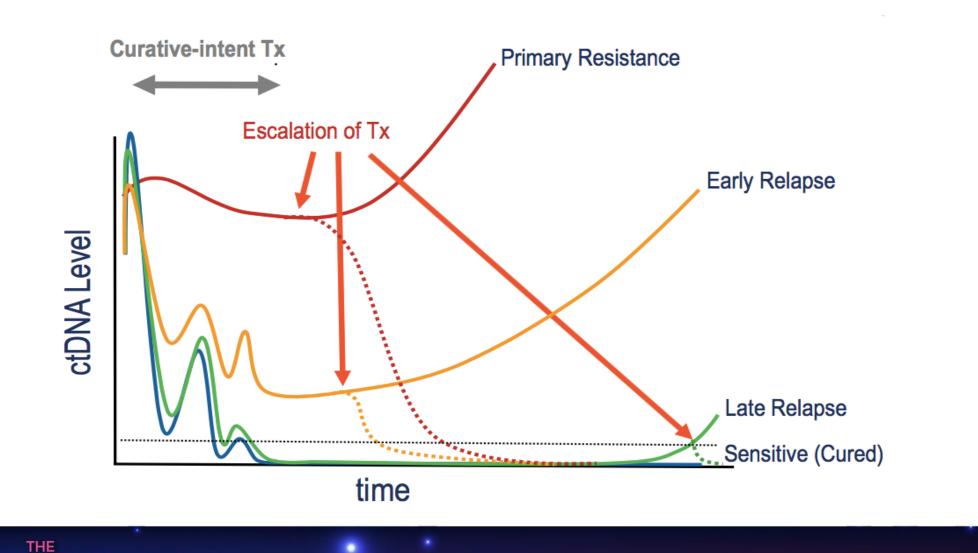

THE

EDITION

**OXFORD DEBATE** 

Dreas

#### Patient EM5




#### Olsson et al. EMBO Mol Med 2015

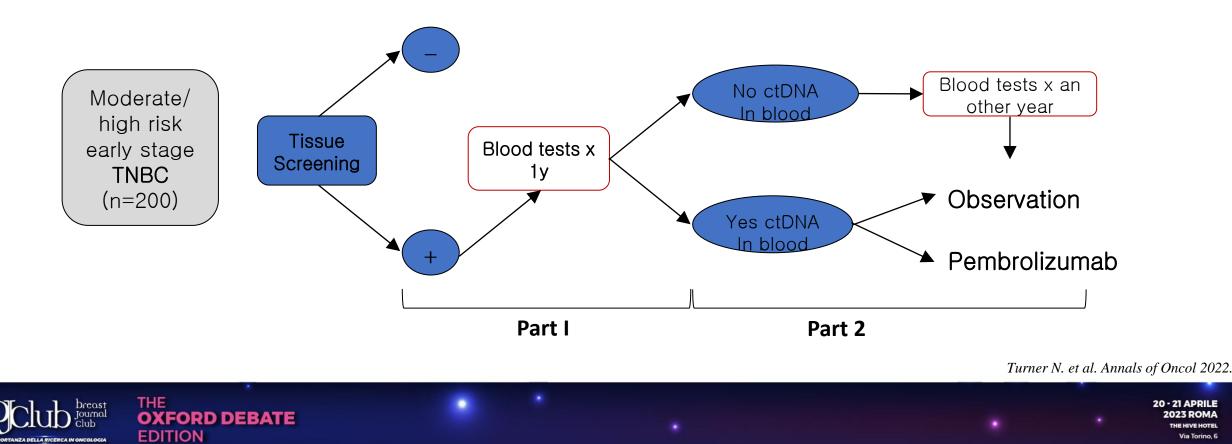
20 - 21 APRILE

2023 ROMA

### Detecting MRD: principles of clinical utility



breast Journal

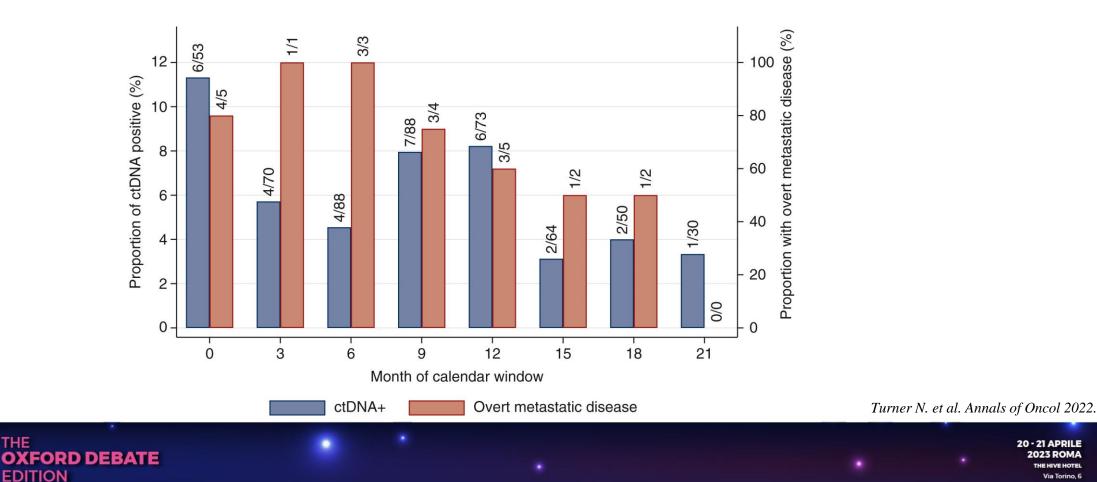

**OXFORD DEBATE** 

**EDITION** 

20 - 21 APRILE 2023 ROMA THE HIVE HOTEL Via Torino, 6

### Are we ready to a clinical use of MRD?

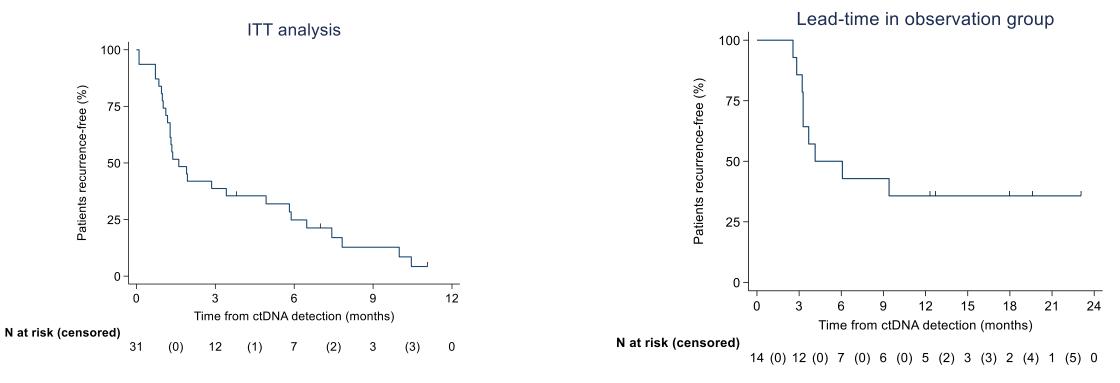
**c-TRACK TN**: A randomized trial utilizing ctDNA mutation tracking to detect minimal residual disease and trigger intervention in patients with moderate and high risk early stage triple negative breast cancer.




### Are we ready to a clinical use of MRD? C-TRACK TN

• Of the patients allocated to intervention, 71.9% (23/32, 95% CI 53.3% to 86.3%) had metastatic disease on staging at the time of ctDNA detection

THE


Ireas



20 - 21 ADDII P

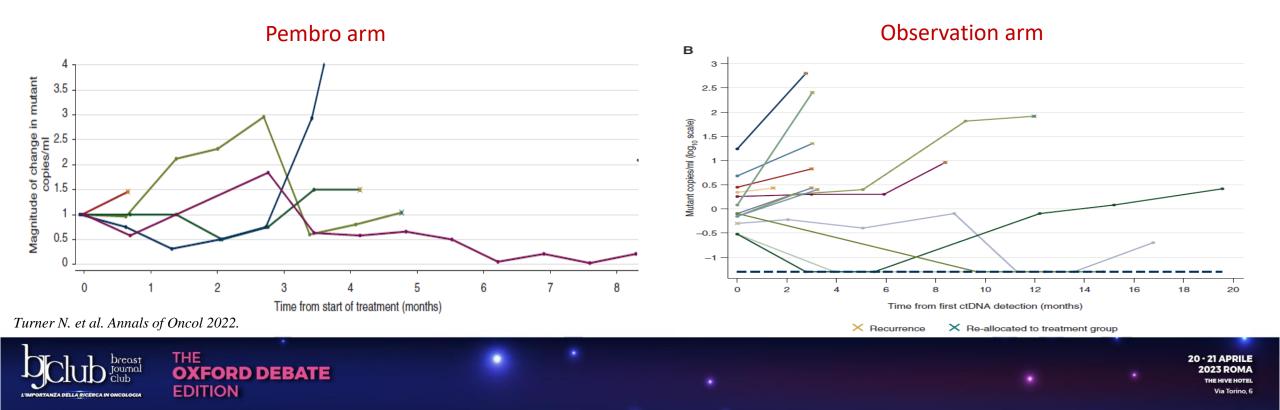
### Are we ready to a clinical use of MRD? C-TRACK TN

 Median lead time between ctDNA detection and disease recurrence in the intervention group was 1.6 months (95% CI 1.2-4.9 months) *versus* 4.1 months (95% CI 3.2 months-not defined) in observation arm



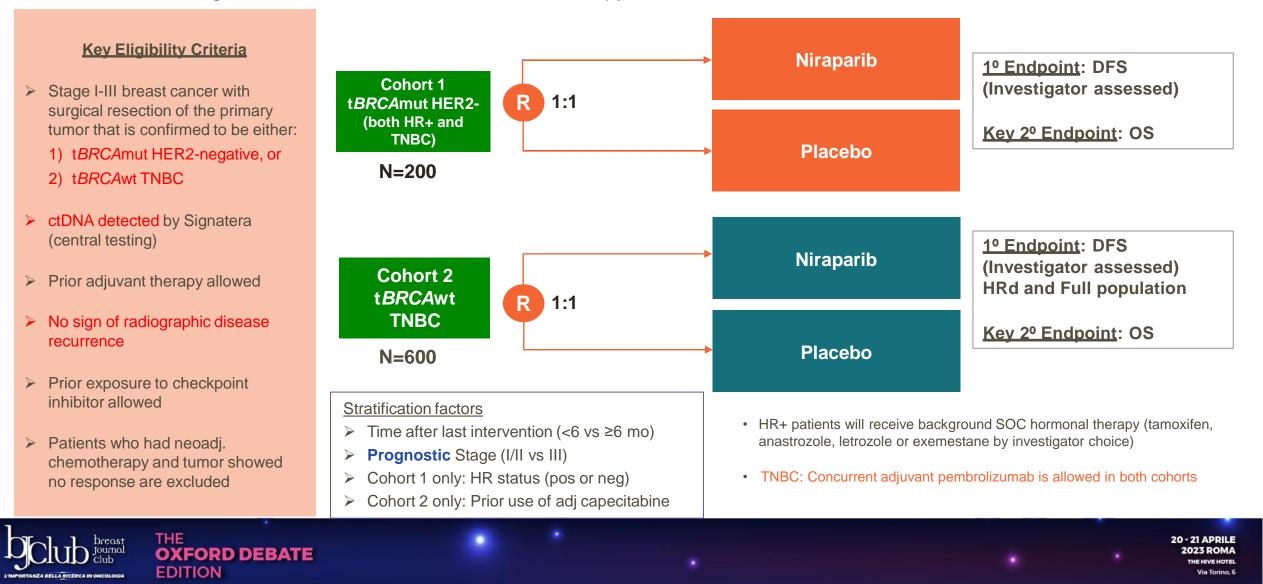
THE

EDITION


**OXFORD DEBATE** 

20 - 21 ADDII I

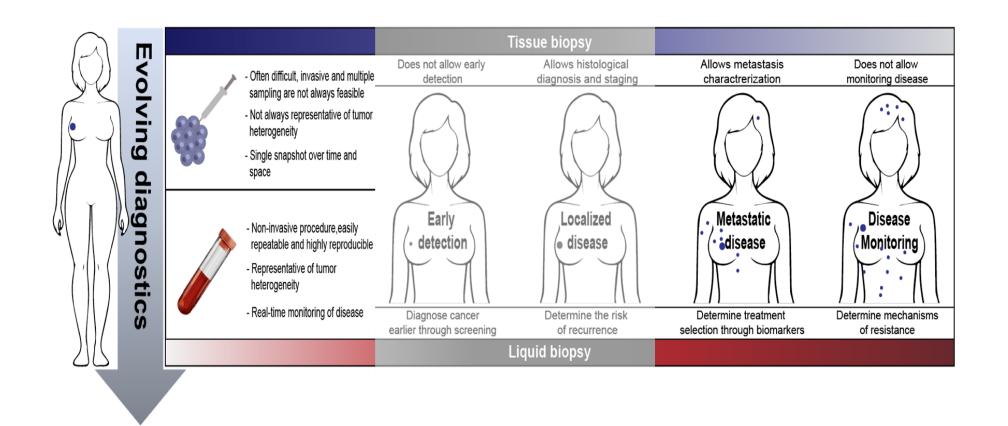
Turner N. et al. Annals of Oncol 2022.


### Are we ready to a clinical use of MRD? C-TRACK TN

- 9 pts allocated to pembrolizumab; 4 declined.
- 5 pts commenced pembrolizumab → none (0/5) achieved ctDNA clearance at 6 months, and all subsequently relapsed
- ctDNA clearance after 6 months occurred in 21.4% (3/14, 95% Cl 4.7% to 50.8%) of pts in the observation group, and 2 pts have never relapsed (false positive result?)



### Are we ready to a clinical use of MRD? ZEST trial


Ph 3 trial of the Treatment of *BRCA*mut HER2-Negative or *BRCA*wt Triple Negative Breast Cancer Patients who have Detectable Circulating Tumor DNA Levels after Definitive Therapy; n = 800



### Are we ready to a clinical use of MRD? ZEST trial

- 233 pts pre-screened in Italy, 7 ctDNA positive, 5 screening failure, 1 randomized
- Our experience (up-to-now): 54 pts pre-screening, 4 ctDNA positive → 3/4 (75%) metastatic at disease staging ; 1/4 (25%) randomized
- Considerations from C-TRACK TN and initial experience with ZEST:
- In prospective randomized trials ctDNA detection often correspond to metastatic disease (if staged with CT and/or PET scan)
- The lead-time is significantly inferior that previously reported
- High number of pts to be screened

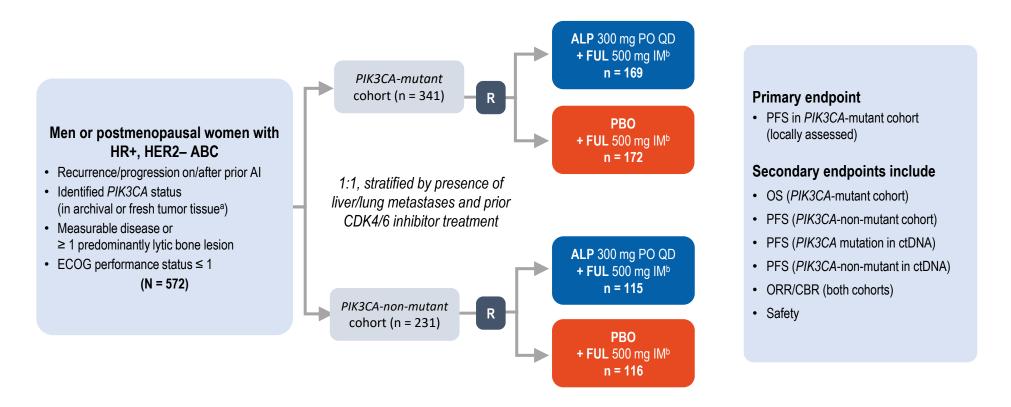




.

THE

EDITION


**OXFORD DEBATE** 

breast Journal Club

L'IMPORTANZA DELLA RICERCA IN ONCOLOGIA



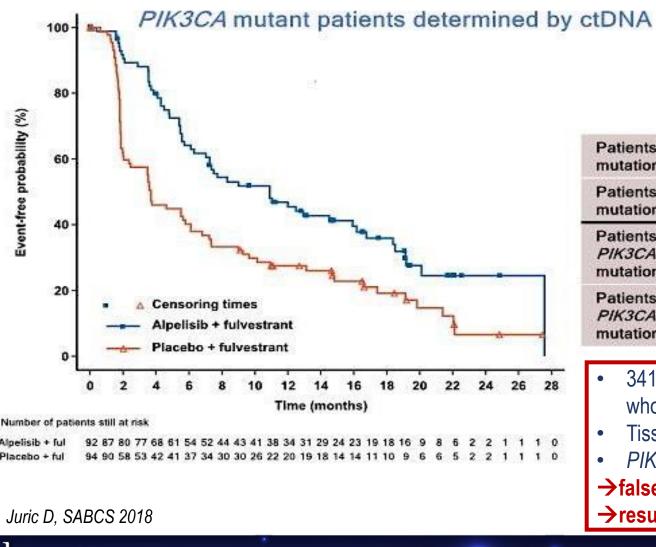
### SOLAR-1: A Phase III Randomized, Double-Blind, Placebo-Controlled Trial (NCT02437318)<sup>1</sup>



Tissue biopsy samples collected by investigator sites and sent to a single central laboratory for *PIK3CA* testing

THE

EDITION


**OXFORD DEBATE** 

reas

#### Juric et al. SABCS, 2018

20 - 21 ADDILE

# Only about half PIK3CA-mut pts on tissue are also ctDNA+: are we risking to lose some pts potentially candidate to alpelisib if we only evaluate ctDNA?



THE

EDITION

**OXFORD DEBATE** 

|                                                              | ALP + FUL         |                | PBO + FUL        |                |      |
|--------------------------------------------------------------|-------------------|----------------|------------------|----------------|------|
|                                                              | Event n/N<br>(%)  | Media<br>n PFS | Event n/N<br>(%) | Media<br>n PFS | HR   |
| Patients with PIK3CA mutation: tissue                        | 103/169<br>(60.9) | 11.0           | 129/172 (75.0)   | 5.7            | 0.65 |
| Patients with PIK3CA mutation: plasma                        | 57/92 (62.0)      | 10.9           | 75/94 (79.8)     | 3.7            | 0.55 |
| Patients <u>without</u><br><i>PIK3CA</i><br>mutation: tissue | 49/115 (42.6)     | 7.4            | 57/116 (49.1)    | 5.6            | 0.85 |
| Patients <u>without</u><br>PIK3CA<br>mutation: plasma        | 92/181 (50.8)     | 8.8            | 103/182 (56.6)   | 7.3            | 0.80 |

341 *PIK3CA* mutations by tissue, 322 had *PIK3CA* results by ctDNA of whom 178 (55.3%) had a *PIK3CA* mutation by ctDNA

20 - 21 ADDIL

- Tissue: >90% archive
- *PIK3CA* mut is quite stable, loss is not so frequent

→false negatives?

→results in concordant and discordant?

# EMERALD: Phase III randomized trial of elacestrant vs standard endocrine therapy

#### **PFS in All patients**

Events, No. (%)

6-month PFS, %

12-month PFS, %

15 16 17 18

HR (95% CI)

P

(95% CI)

(95% CI)

13

Time (months)

Elacestrant

(n = 239)

144 (60.3)

34.3

(27.2 to 41.5)

22.3

(15.2 to 29.4)

0.70 (0.55 to 0.88)

.0018

19 20 21 22 23 24 25

SOC

(n = 238)

156 (65.5)

20.4

(14.1 to 26.7)

(4.0 to 14.8)

9.4

100

90

80

70

60

50

40 30

20

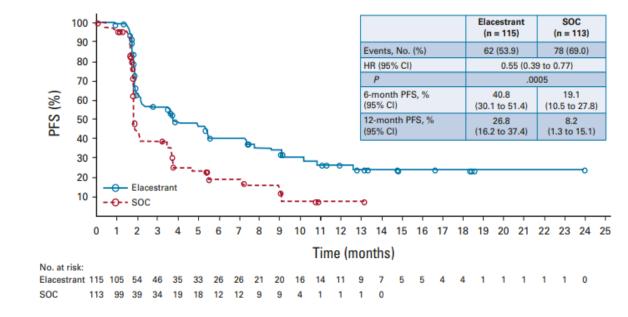
10

Elacestrant 239 223

39

25 25 16 15

THE


EDITION

**OXFORD DEBATE** 

No. at risk:

SOC

PFS (%)



#### PFS in ESR1mut patients

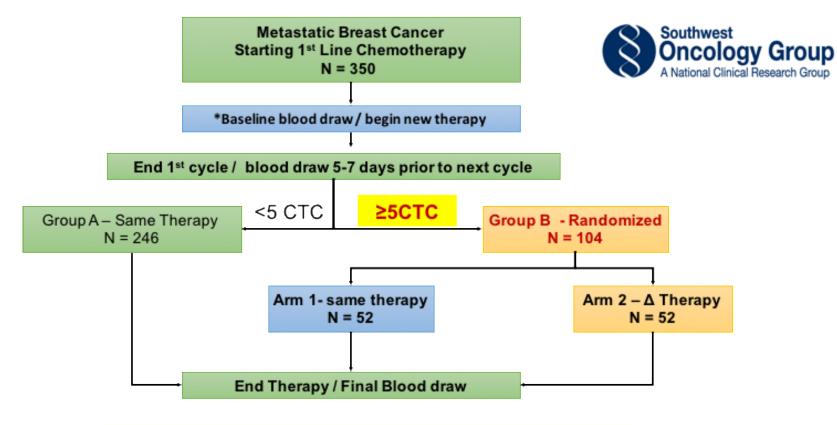
CO-PRIMARY endpoints were PFS in all pts and in ESR1mut pts. Formally, the trial is positive for both the co-primary endpoints. Do we really need ESR1mut to candidate pts to elacestrant? (FDA) Are we ready to deny an ORAL potentially valid alternative to fulvestrant in ESR1wt pts? Waiting for EMA

20 - 21 ADDII F

Bidard F-C et al. J Clin Oncol 2022;40:3246-56

JOURNAL OF CLINICAL ONCOLOGY

THE


EDITION

**OXFORD DEBATE** 

breast

A DELLA RICERCA IN ONCOLOGIA

# Circulating Tumor Cells and Response to Chemotherapy in Metastatic Breast Cancer: SWOG S0500



1° End Points = PFS (Progression / RECIST) & OS (12 month follow-up) 2° End point = QOL (SWOG Method)



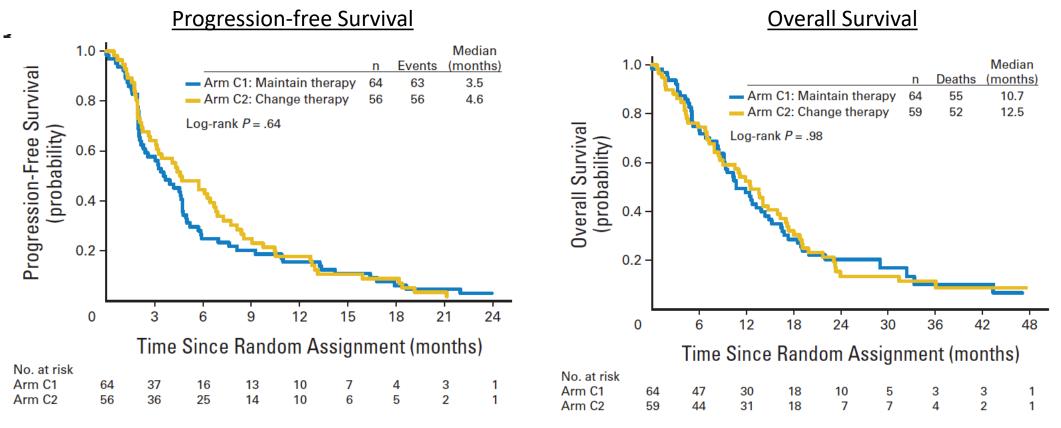
20 - 21 APRILE

2023 ROMA

HE HIVE HOTEL

JOURNAL OF CLINICAL ONCOLOGY

THE


**EDITION** 

**OXFORD DEBATE** 

Dreas

#### ORIGINAL REPORT

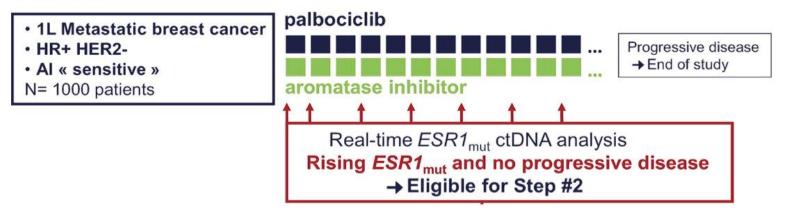
# Circulating Tumor Cells and Response to Chemotherapy in Metastatic Breast Cancer: SWOG S0500



#### Smerage JB et al. JCO 2014

20 - 21 ADDII P

#### Testing clinical utility of real-time ESR1 mut. detection: PADA-1 Trial

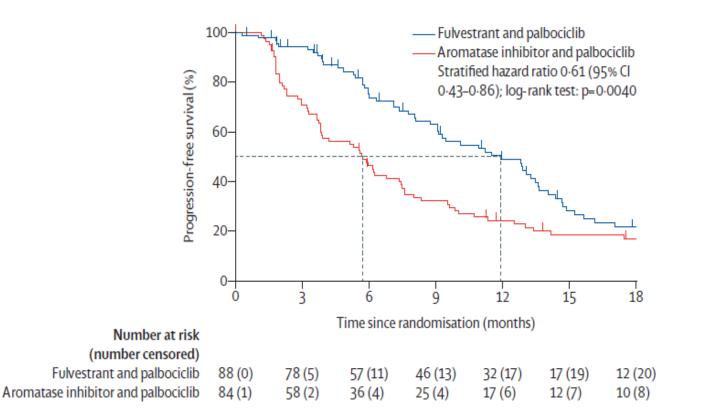

STEP #1

THE

**EDITION** 

**OXFORD DEBATE** 

Dreast




Bidard et al, SABCS 2018

20 - 21 APRILE

2023 ROMA

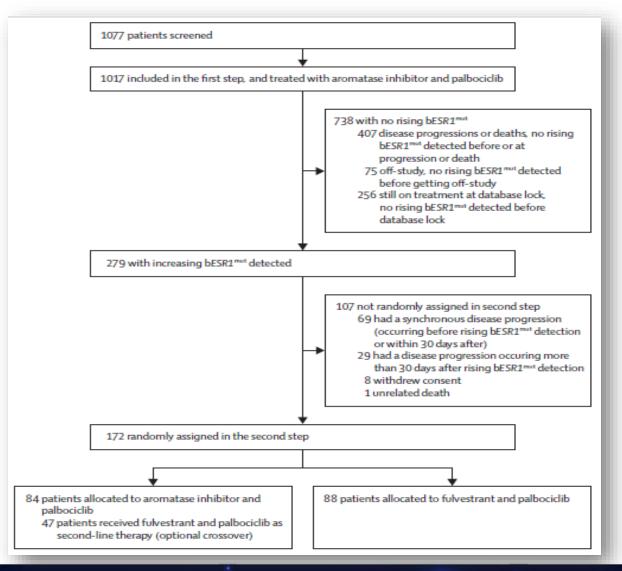
#### Testing clinical utility of real-time ESR1 mut. detection: PADA-1 Trial



THE

**EDITION** 

**OXFORD DEBATE** 


Dreas:

Bidard F-C et al. Lancet Oncol 2022;23:1367–77.

20 - 21 APRILE

023 ROMA

#### Testing clinical utility of real-time ESR1 mut. detection: PADA-1 Trial



THE

EDITION

**OXFORD DEBATE** 

)ceos

#### Some considerations

- For 107/279 (38%) ESR1 monitoring strategy failed
- Is a PFS advantage enough to consider an anticipated line? Or shoud we wait for OS data? Other endpoints to be considered?
- In all randomly assigned pts (n=172), the median time to strategy failure was 11.9 months (9.1–13.6) in the fulvestrant and palbo group and 10.6 months (8.0–13.4) in the AI and palbo group (HR 1.02, 95% CI 0.71–1.45; log-rank test p=0.90)
- The median CT-free survival was 14.6 months (11.8–17.0) in the fulvestrant and palbo group and 13.1 months (10.8–17.6) in the AI and palbociclib group (HR 0.91, 0.62–1.33; log-rank test p=0.60)
- Possibility to switch to elacestrant at progression

Bidard F-C et al. Lancet Oncol 2022;23:1367–77.

20 - 21 APRILE

2023 ROMA

HE HIVE HOTEL

#### Does liquid biopsy have a clinically utility NOW? NO!

#### PROs

#### CONs



Risk of losing some *PIK3CA* mutations using liquid biopsy vs tissute biopsy

MRD detection currently not correlate with improved outcome. MRD often = metastatic disease

Not ready for screening (low sensibility at low VAF, not costeffective, not reliable)

THE

**EDITION** 

**OXFORD DEBATE** 

breast Journal

