Implementazione e applicazione dell'IA nella ricerca preclinica e traslazionale

Giuseppe Curigliano, MD PhD Early Drug Development for Innovative Therapies European Institute of Oncology IRCCS Milano, Italy Università di Milano

- Honoraria as a consultant, advisor or speaker: Roche, Menarini/Stemline.
- Travel and accommodation support: AstraZeneca.
- Grant/Funding: Merck

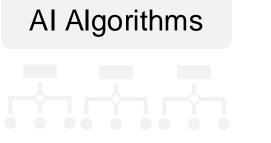
Agenda

- Real-World Data (RWD) vs Real-World Evidence (RWE)
- Use of RWD to design external control arm(s)
- Use of AI in Oncology
- Multimodal integration of Big Data and AI in Oncology
- Take-home messages

Big Data and Artificial Intelligence in Cancer Medicine

Computational Resources

Big Data and Artificial Intelligence in Cancer Medicine



Computational Resources

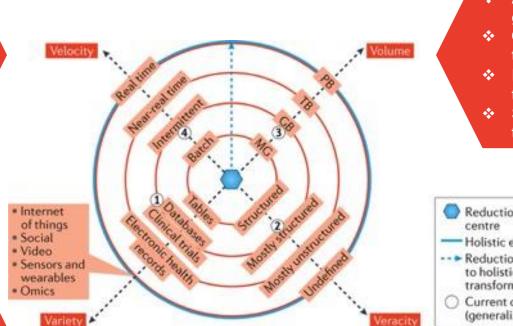
The 4 Vs of Biomedical Big Data

VELOCITY

- Speed of ** generating data
- Generated in real ** time
- Online and offline data
- In streams, batch * or bits

VARIETY

- Structured and * unstructured
- * Online images and videos
- Human generated * texts
- Machine generated ** readings



VOLUME

- Amount of data ** generated
- Online and offline transactions
- In kilobytes or terabytes
- Saved in records, tables, files

Adapted from Khozin, Nat Rev Drug Discov 2017

Real World Data vs Real World Evidence

Real World Data (RWD) are data relating to patient health status and/or the delivery of health care routinely collected from a variety of sources

Electronic health records (EHRs)

Medical claims data

Product and disease registries

Patient-generated data, including inhome settings

Data gathered from other sources, such as mobile devices, that can inform on health status **Real World Evidence (RWE)** is the clinical evidence regarding the usage and potential benefits or risks of a medical product derived from analysis of RWD

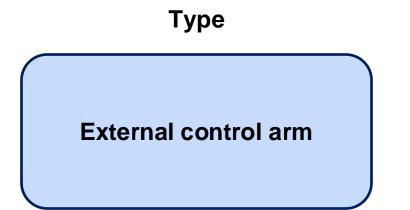
Generated using different study designs, including but not limited to randomized trials (e.g., large simple trials, pragmatic trials), externally controlled trials, and observational studies

What is an externally controlled trial?

 An externally controlled trial is one in which the control group consists of patients who are not part of the same randomized study as the group receiving the investigational agent (i.e., there is no concurrently randomized control group).

- **Challenge**: Interpreting time to event endpoints in single arm trials
- **Potential solution**: use of well constructed external control designs
- Methodological concern: ensuring balance of factors for evaluation in the absence of randomization

External controls



Temporality

Concurrent control: Patient population treated during the same or similar period, reflecting a similar standard of

care

Synthetic control arm

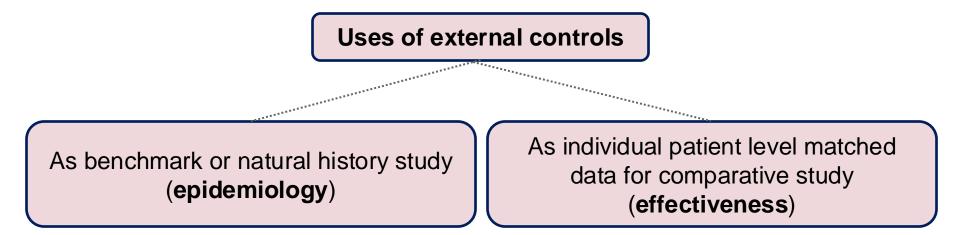
Historical control:

Non contemporaneous patient population where retrospective or retrospectively analysed data is used as comparator

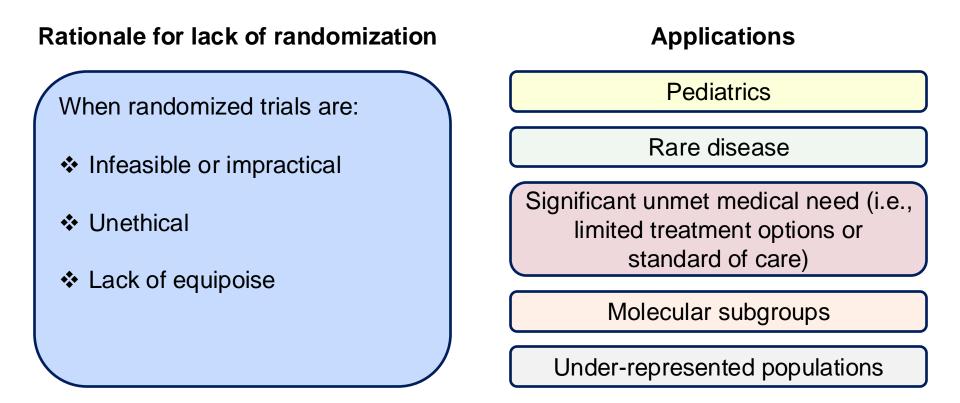
External control arms

External control designs

- Previously conducted clinical trial(s), including pooled trial data
- Historical real-world data (single source)
- Historical real-world data (pooled data)
- Prospective real-world data
- Hybrid prospective designs (e.g., concurrently randomized control as well as external control)

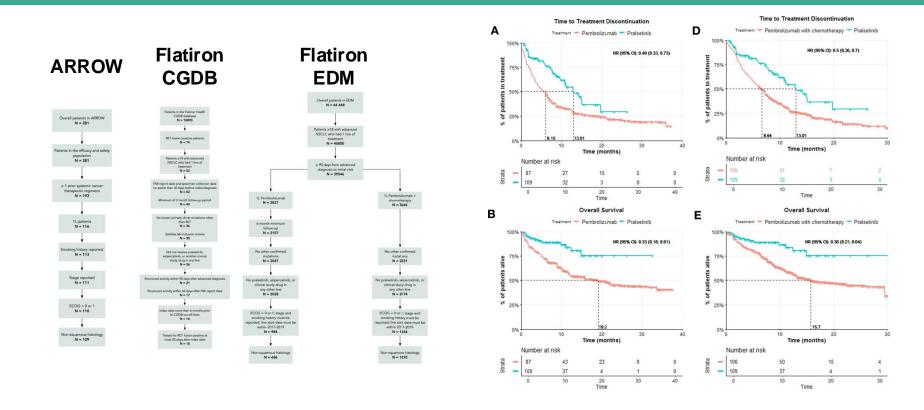


Use of external control arms



Rivera, FDA Workshop 2021

Real-world synthetic control arms to demonstrate the comparative effectiveness of pralsetinib in NSCLC



Popat, Nat Comm 2022

Other examples of the use of external RWD for drug evaluation by regulatory agencies

Table 1. Regulatory case studie	1. Regulatory case studies				
Drug	Disease setting	Source of external control data	Regulatory use of external control data		
Selumetinib	Neurofibromatosis type 1 with inoperable plexiform neurofibromas (pediatric)	Previously conducted clinical trials	Establish natural history of disease		
Erdafitinib	Unresectable urothelial cancer harboring select FGFR genetic alterations	Patient-level EHR data from US community-based cancer clinics	Establish natural history of disease		
Pembrolizumab and lenvatinib	Advanced endometrial carcinoma that is not MSI-H or dMMR	Previously conducted clinical trials	Isolation of treatment effect		
Several immunooncology combination therapies	Untreated, locally advanced or metastatic renal cell carcinoma	Previously conducted clinical trials	Isolation of treatment effect		
Blinatumomab	Precursor B-cell ALL in complete remission with detectable MRD	Retrospective observational cohort study	Comparative efficacy analysis		

ALL, acute lymphoblastic leukemia; dMMR, mismatch repair deficient; EHR, electronic health record; FGFR, fibroblast growth factor receptor; MRD, minimal residual disease; MSI-H, microsatellite instability-high.

Key methodological concerns

Data quality and metrics (internal validity)

Cohort definition

(external validity)

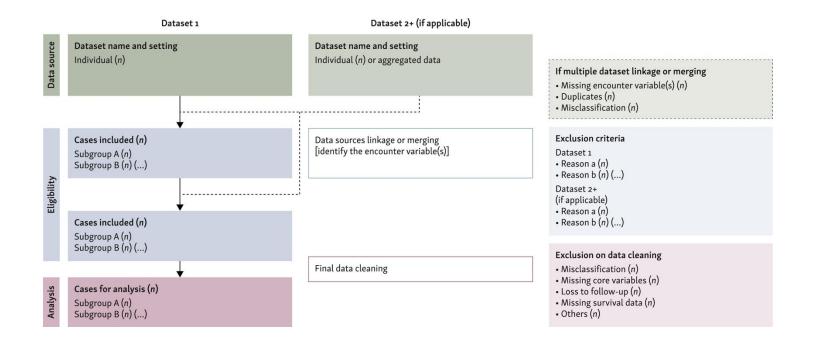
Endpoint validation (response and time to event)

Bias (selection, confounding misclassification)

Fit for purpose: is data complete, consistent, accurate, longitudinal?

ESMO Guidance for Reporting Oncology Real-World Evidence

ESMO-GROW flowchart illustrating the process of case selection for analysis



Big Data and Artificial Intelligence in Cancer Medicine

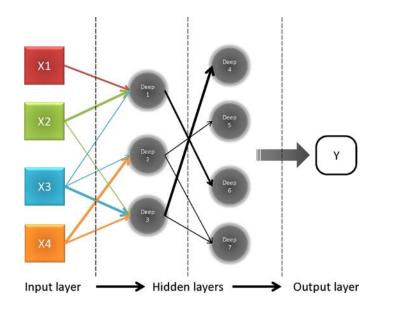
Computational Resources

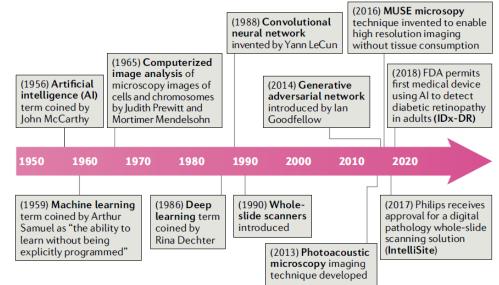
Big Data and Artificial Intelligence in Cancer Medicine

Computational Resources

Introduction to Artificial Intelligence (AI)

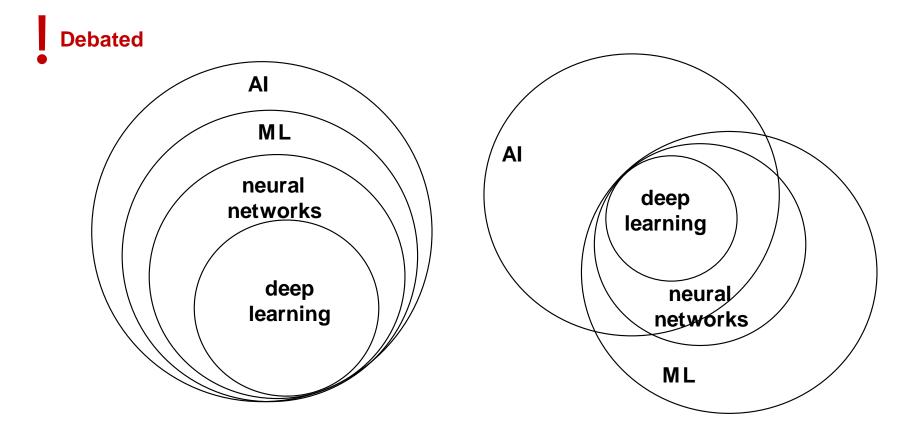
The branch of computer science in which machine-based approaches are used to attempt to make a prediction — emulating what an intelligent human might do in the same situation.





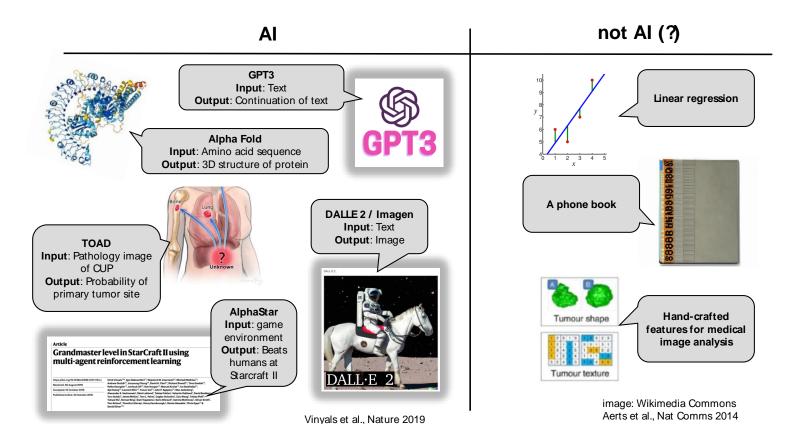
First FDA Breakthrough approval for an AI-based pathology solution was granted in 2019

Taxonomy of Artificial Intelligence



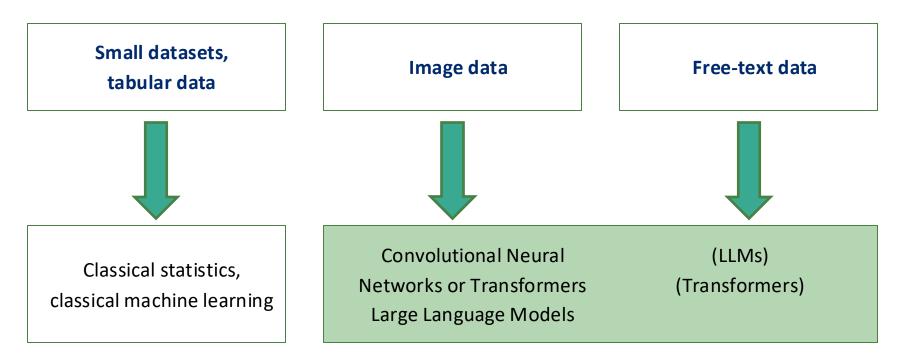
AI for People and Business by Alex Castrounis, O'Reilly

Examples of Artificial Intelligence



Courtesy of Jakob Kather

When AI should be used in Oncology?



Deep Learning

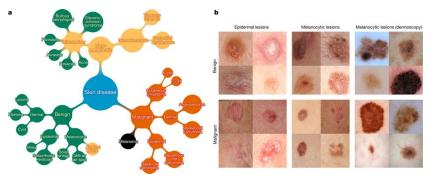
>90% of AI tools in Oncology use image data

LETTER

doi:10.1038/nature21056

Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteva¹*, Brett Kuprel¹*, Roberto A. Novoa^{2,3}, Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶



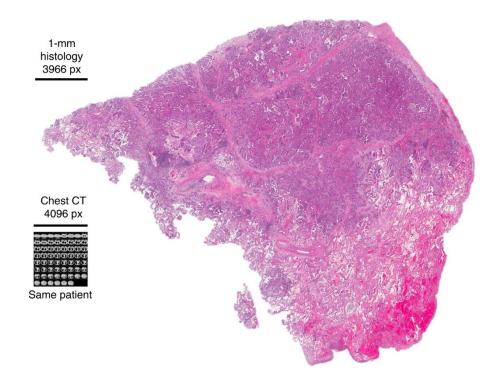


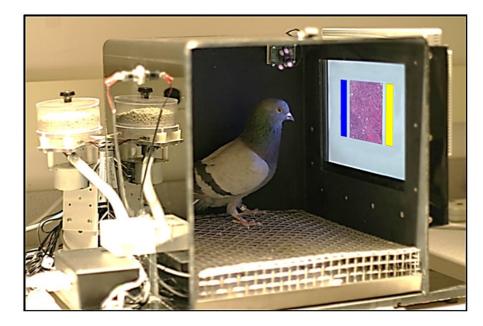
Image classification is easy (apparently)

PLOS ONE

RESEARCH ARTICLE

Pigeons (*Columba livia*) as Trainable Observers of Pathology and Radiology Breast Cancer Images

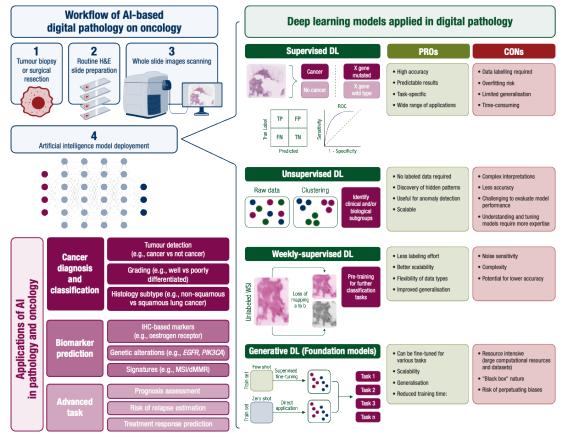
Richard M. Levenson $^{1\,*},$ Elizabeth A. Krupinski $^{3},$ Victor M. Navarro $^{2},$ Edward A. Wasserman $^{2\,*}$



Supervised classification problems: Class A or Class B

Courtesy of Jakob Kather

Current workflow, deep learning models and application of AI in pathology for oncology



Marra, Ann Oncol. 2025, in press

Strong vs weak supervision

Strong supervision

Negative original image labels weak Negative strong labels Class A Class **B**

Beeb Fearuing Aields substitute

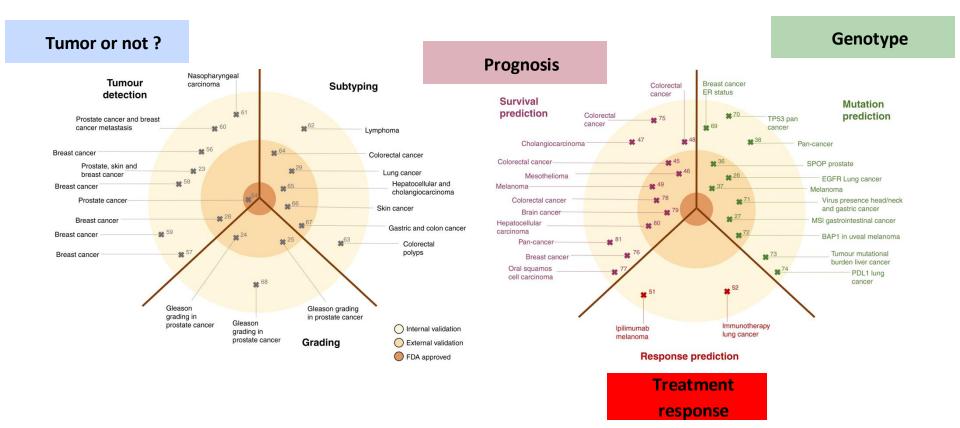
Weak supervision

Deep Learning yields surprisingly good results when trained on weakly labeled data

Labels = Genetic alterations, survival, response, ...

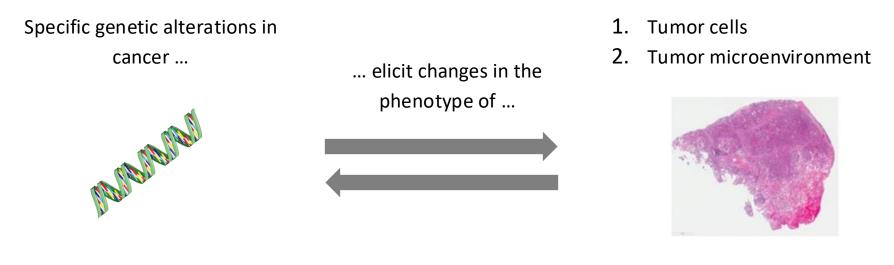
Courtesy of Jakob Kather

Which are the applications of AI in Oncology?



Echle, Br J Cancer. 2021

Central Assumption



Deep learning can infer genotype from histology images

Courtesy of Jakob Kather

Weakly supervised Deep Learning can predict genetic alterations from H&E images

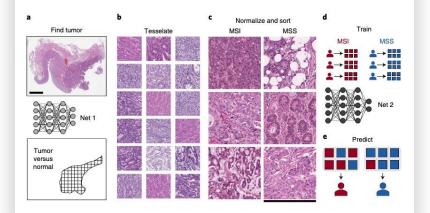
Genotype determines the phenotype

Deep Learning detects genotype from the phenotype

medicine

Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer

Jakob Nikolas Kather ^{1,2,3,4,5*}, Alexander T. Pearson⁴, Niels Halama^{0,2,5,6}, Dirk Jäger^{2,3,5}, Jeremias Krause^{0,1}, Sven H. Loosen¹, Alexander Marx⁷, Peter Boor^{0,8}, Frank Tacke⁹, Ulf Peter Neumann¹⁰, Heike I. Grabsch^{0,11,2}, Takaki Yoshikawa^{13,14}, Hermann Brenner^{2,15,16}, Jenny Chang-Claude^{17,18}, Michael Hoffmeister¹⁵, Christian Trautwein¹ and Tom Luedde^{0,1*}

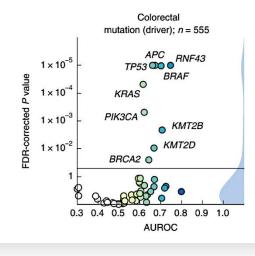


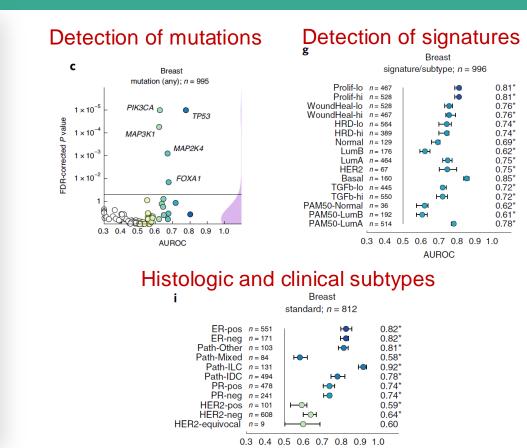
Kather, Nat Med 2019

Can we extend this to other genetic alterations?

Pan-cancer image-based detection of clinically actionable genetic alterations

Jakob Nikolas Kather ^{1,2,3}²³, Lara R. Heij^{4,5,6}, Heike I. Grabsch^{0,8}, Chiara Loeffler¹, Amelie Echle¹, Hannah Sophie Muti¹, Jeremias Krause¹, Jan M. Niehues¹, Kai A. J. Sommer¹, Peter Bankhead⁹, Loes F. S. Kooreman⁷, Jefree J. Schulte^{0,0}, Nicole A. Cipriani^{0,10}, Roman D. Buelow^{0,6}, Peter Boor⁶, Nadina Ortiz-Brüchle^{0,6}, Andrew M. Hanby⁸, Valerie Speirs^{0,11}, Sara Kochanny¹², Akash Patnaik¹², Andrew Srisuwananukorn¹³, Hermann Brenner^{2,145}, Michael Hoffmeister¹⁴, Piet A. van den Brandt^{0,145}, Dirk Jäger^{2,3}, Christian Trautwein¹, Alexander T. Pearson^{0,12,192} and Tom Luedde^{0,17,18,19}

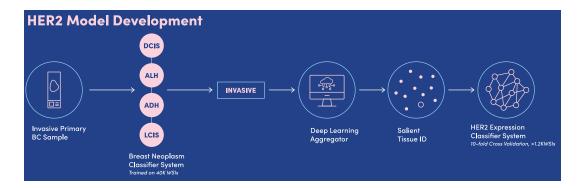


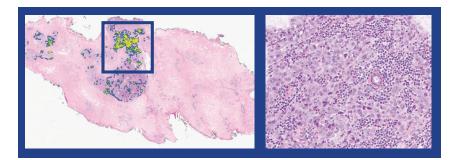


AUROC

Kather, Nature Cancer 2020

Al-driven model to recover cases with low levels of HER2 from IHC HER2-negative breast cancers



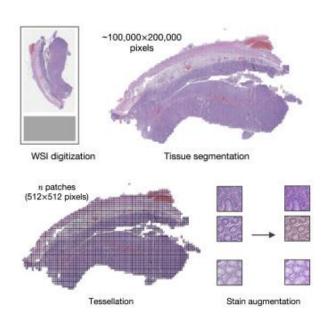


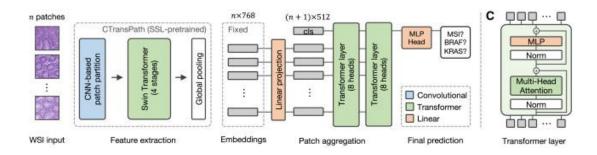
Metrics	Case Level	Slide Level	*Calculated on test
Sensitivity*	0.78	0.73	
Specificity*	0.78	0.77	
PPV*	0.23	0.21	
NPV*	0.98	0.97	

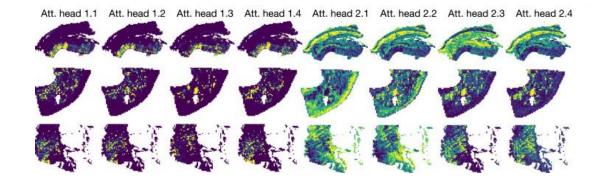
Sensitivity: # true positive / (# true positive + # false negative) Specificity: # true negative / (# true negative + # false positive) PPV: # true positive / (# true positive + # false positive) NPV: # true negative / (# true negative + # false negative)

Marra, ESMO 2022, manuscript in preparation

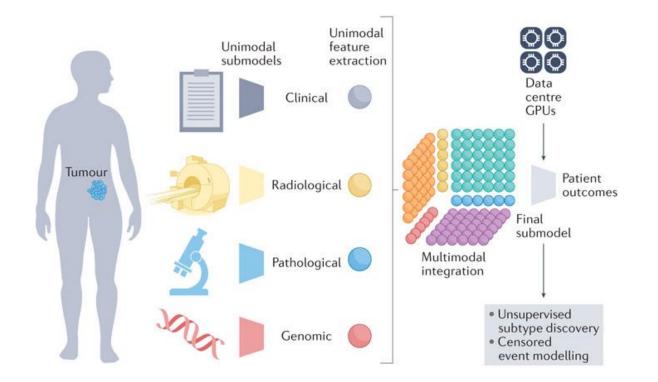
Transformers have multiple attention heads: more interpretability?



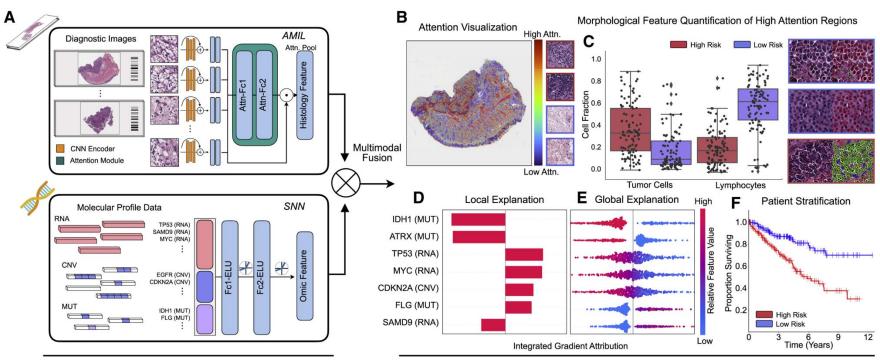




Al-driven multimodal data integration in Oncology



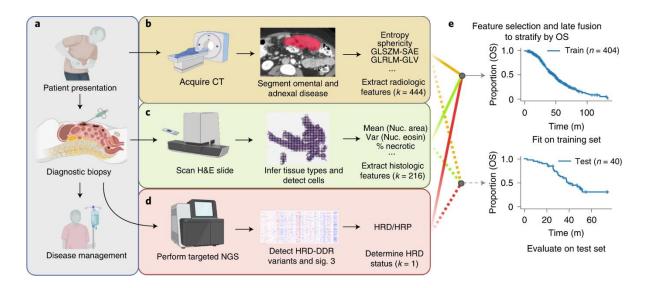
Multimodal integration of genetic data with image data

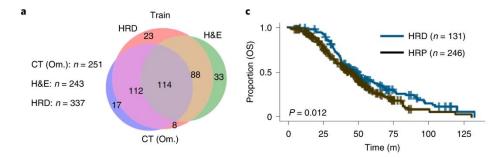


Weakly Supervised Multimodal Training + Validation

Interpretability Analysis + Knowledge Discovery

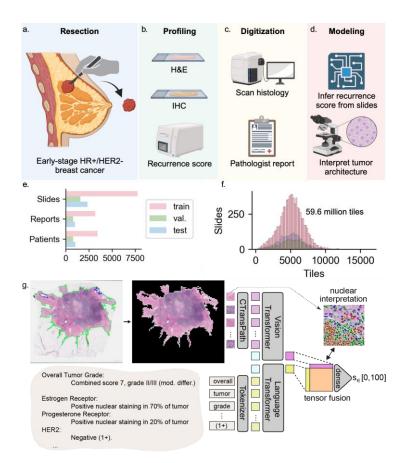
Multimodal integration of genetic data with image data

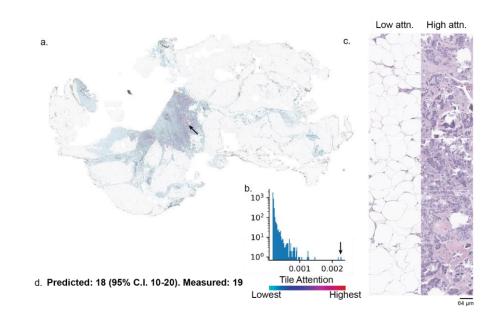




Boehm, Nat Cancer 2022

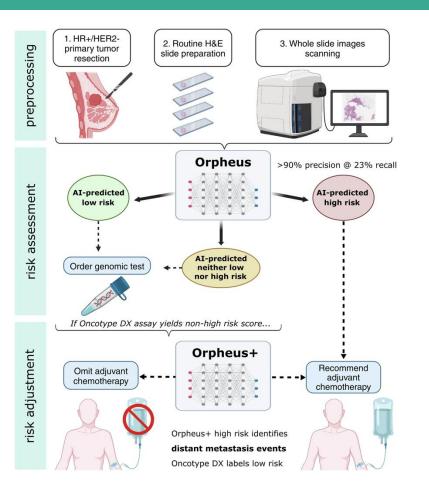
Developing a multimodal transformer model for breast cancer risk





Boehm, Marra et al., Nature Commun. 2025

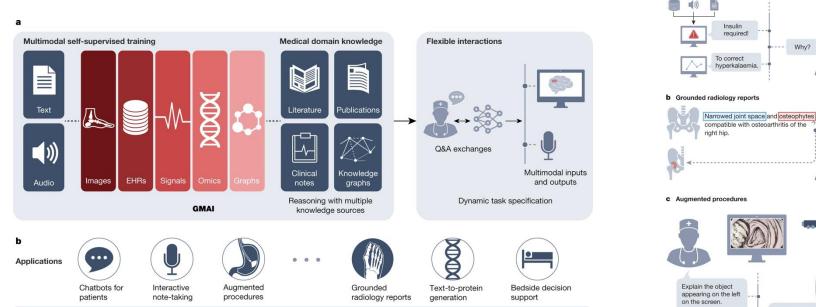
Developing a multimodal transformer model for breast cancer risk



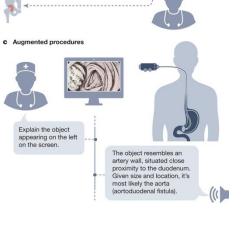
Potential clinical use case of the Al-based recurrence risk prediction model

Boehm, Marra et al., Nature Commun. 2025

Multimodal Foundation Models



Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity



Why

a Bedside decision support EHRs Audio Text

> Insulin required!

Take-Home Messages

- Artificial Intelligence (AI) has indisputable potential to enhance the care of patients with cancer from the the diagnosis to personalizing treatments
- The **multimodal integration of AI and Big Data** can further refine clinical subtyping to identify patient subsets for treatment escalation/de-escalation and testing new drugs
- From the clinical perspective, **building clinicians' trust in AI-assisted decision-making** is critical for the entry of AI in clinic

"AI won't replace humans, but humans using AI will"

Fei-Fei Li

