

ORIGINAL ARTICLE

ESNO GOOD SCIENCE BETTER NEDICINE BEST BEACTIVE

breast

Diedsi Journal Club

L'IMPORTANZA DELLA RICERCA IN ONCOLOG

7-8 MARZO 2025 NAPOLI

Hotel Royal Continental

Via Partenope, 38

Early prediction of endocrine responsiveness in ER + / HER2-negative metastatic breast cancer (MBC): pilot study with ¹⁸F-fluoroestradiol (¹⁸F-FES) CT/PET☆

A. Gennari^{1,2*}, E. Brain³, A. De Censi⁴, O. Nanni⁵, R. Wuerstlein⁶, A. Frassoldati⁷, J. Cortes^{8,9}, V. Rossi², M. Palleschi¹⁰, J. L. Alberini¹¹, F. Matteucci¹², A. Piccardo¹³, G. Sacchetti¹⁴, H. Ilhan¹⁵, F. D'Avanzo², B. Ruffilli¹, S. Nardin¹⁶, M. Monti⁵, M. Puntoni¹⁷, V. Fontana¹⁸, L. Boni¹⁸ & N. Harbeck⁶, on behalf of the ET-FES Collaborative Group[†]

¹Department of Translational Medicine, University of Piemonte Orientale, Novara; ²Division of Medical Oncology, Maggiore University Hospital, Novara, Italy; ³Department of Medical Oncology, Institut Curle—Hôpital René Huguenin, Saint-Cloud, France; ⁴Medical Oncology, E.O. Ospedali Galliera, Genova; ⁵Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy; ⁶Department of Obstetrics and Gynecology and CCC Munich, LMU University Hospital, Munich, Germany; ⁷Clinical Oncology, S. Anna University Hospital, Ferrara, Italy; ⁸International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona; 9 Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain; ¹⁰Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy; ¹¹Nuclear Medicine Department Centre Georges-Francois Leclerc, Dijon Cedex, France: ¹²Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo studio dei tumori (IRST) - "Dino Amadori", Meldola; ¹³Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa; ¹⁴Division of Nuclear Medicine Unit, Maggiore University Hospital, Novara, Italy; ¹⁵Department of Nuclear Medicine, LMU University Hospital, Munich, Germany; ¹⁶Medical Oncology Unit 1, IRCCS—Ospedale Policlinico San Martino, Genoa; ¹⁷Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma; ¹⁸Department of Clinical Epidemiology, IRCSS Ospedale Policlinico San Martino, Genoa, Italy

https://doi.org/10.1016/j.annonc.2024.02.007

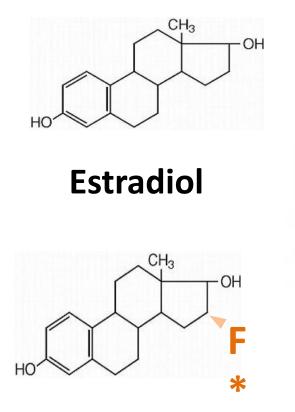
Disclosure

- Honoraria for lectures and/or consulting: Astra Zeneca, Daichii-Sankyo, Eisai, Gentili, Gilead, Pfizer, Novartis, Organon, Seagen, Lilly, Roche, MSD. Institutional research grant (Gilead, Pharmanutra).
- Non profit research support: AIRC, Italian Association for Cancer Research, MIUR Dept of Excellence, MIUR, LILT Novara, University of Piemonte Orientale, Italian Ministry of Health, EraNET Transcan
- Scientific Board in IBCSG; Membership/affiliation: LILT, FUV

Early prediction of endocrine responsiveness in ER+/HER2 negative MBC: Pilot study with 18F-fluoroestradiol (18F-FES) CT/PET

BACKGROUND

- 30-40% of ER+/HER2- MBC patients fail to achieve a durable response to ET.
- **18F-FES PET/CT** has been shown to represent an accurate diagnostic tool to determine ER status and it can be proposed as a valid alternative to biopsy of metastatic lesion.


In this trial, we evaluate 18F-FES PET/CT as a predictive tool for endocrine responsiveness in ER+ MBC.

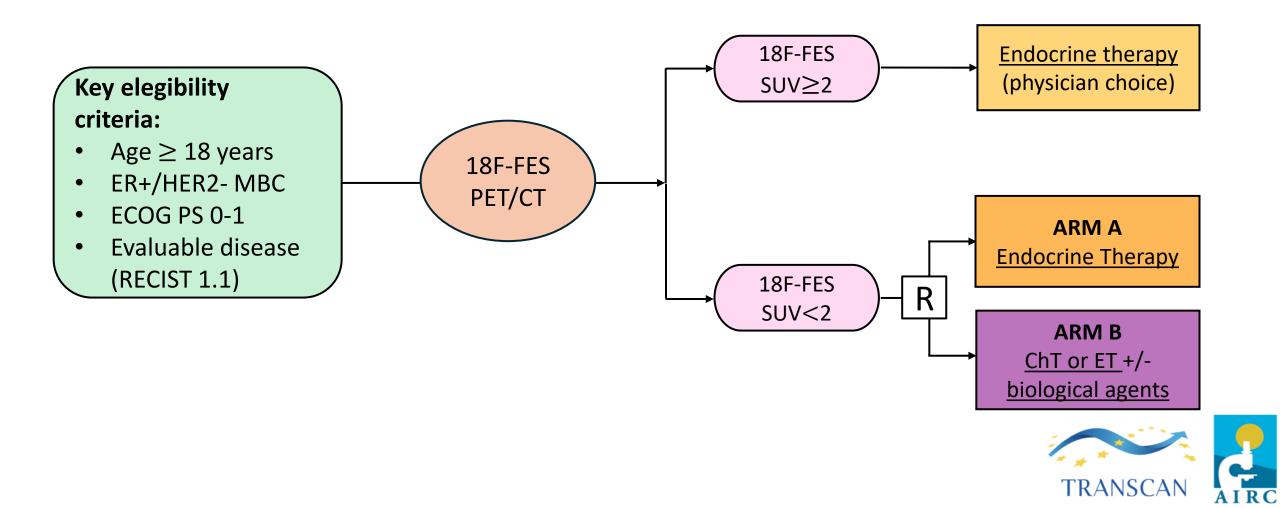
AIM OF THE STUDY

Primary objective: to compare the efficacy of Ist line ET vs CT in pts with ER+/HER2-MBC and 18F-FES SUV<2 at basal PET/CT scan.

18F-Fluoro-Estradiol (FES)-PET/CT

Table 1: FES Diagnostic Uses in the United States

As an adjunct to biopsy, FES can be used as follows: Select a biopsy target Assess the burden of ER-positive disease Clarify FDG-avid findings Identify spatial and/or temporal ER heterogeneity Possible future applications: Predict response to systemic therapy Demonstrate effective ER blockade by an ER antagonist Initial staging of ER-positive breast cancer Clinical use in other patient populations


Note.—FES is currently FDA approved for detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or metastatic breast cancer.

FES

Peterson LM et al. J Nucl Med. 2008;49(3):367-374 Boers J et al. Curr Oncol Rep. 2020;22(8):85 O'Brien SR et al. Radiographics. 2023;43(3):e220143

ET-FES Study design

The ET-FES is a pilot, phase II, prospective, multicenter trial

ET-FES Study

- **Clinical validation trial:** phase II randomized comparative clinical trial with a diagnostic agent (18F-FES), whose primary aim is to identify endocrine resistant patients
- Multicenter trial
 - Project coordinator: Alessandra Gennari, Novara, IT
 - Project partner:
 - Dino Amadori, Meldola, IT
 - Javier Cortes, Barcelona, E
 - Nadia Harbeck, Munich, DE
 - Etienne Brain, St Cloud, FR

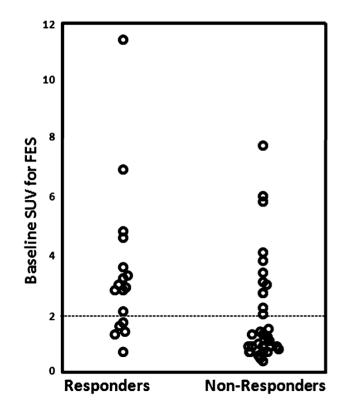
ET-FES objectives

PRIMARY OBJECTIVE

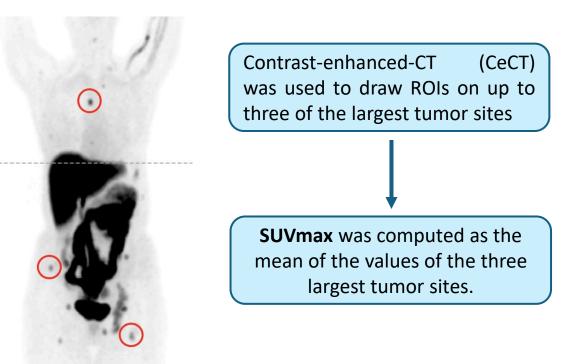
 to compare the efficacy of first-line ET versus CT in patients with ER+/HER2-negative MBC and 18F-FES SUV<2 at basaline CT/PET scan.

PRIMARY ENDPOINT

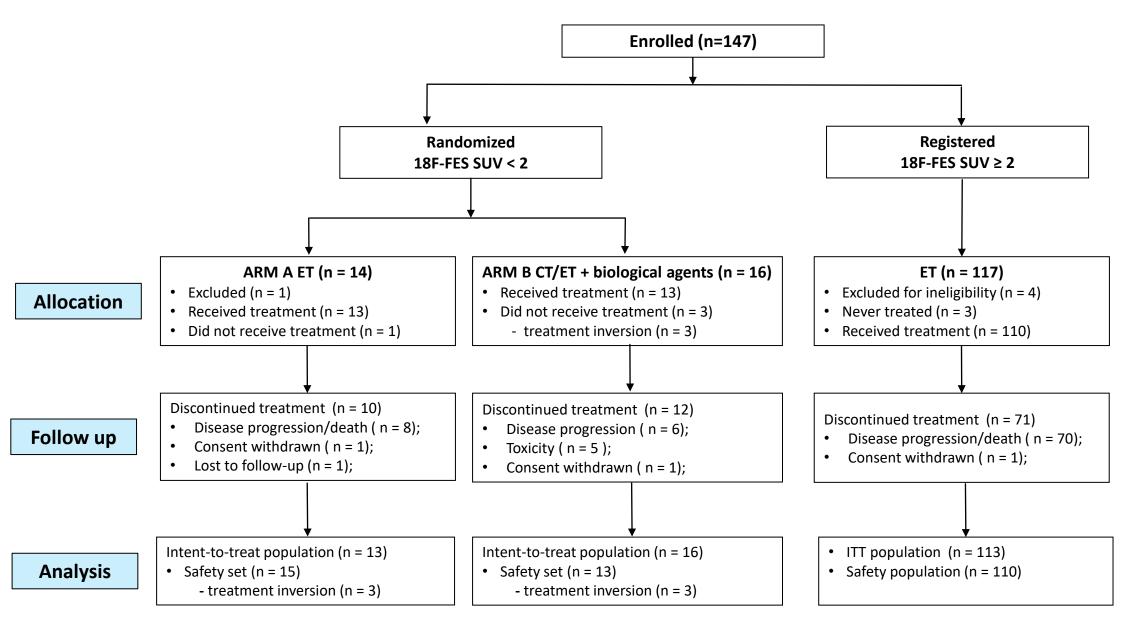
- DCR, as defined by the proportion of patients who did not experience disease progression within 3 months of treatment → due to low number of patients experiencing PD or death at 3 months
- Progression Free Survival (PFS) and Overall Survival (OS)


SECONDARY ENDPOINT

- Evaluating DCR with ET in patients with 18F-FES SUV≥2
- Comparing DCR with ET in patients with 18F-FES SUV≥2 with that of patients with 18F-FES<2
- Correlating ER expression in the primary tumor and overall 18F-FES uptake in metastases
- Assessing OS in all patients and by 18F-FES SUV value

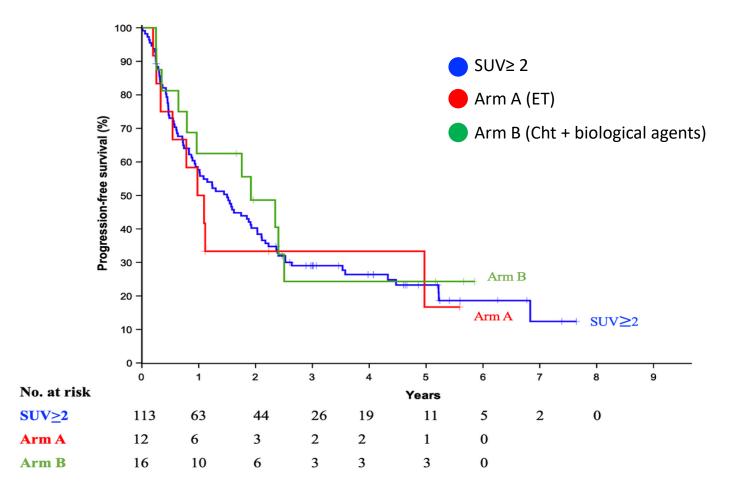

SUVmax

18F-FES SUV is normally distributed with a mean value = 2.


- **18-F FES SUV >2** → Responding patients
- **18F-FES SUV <2** → Non-responding patients

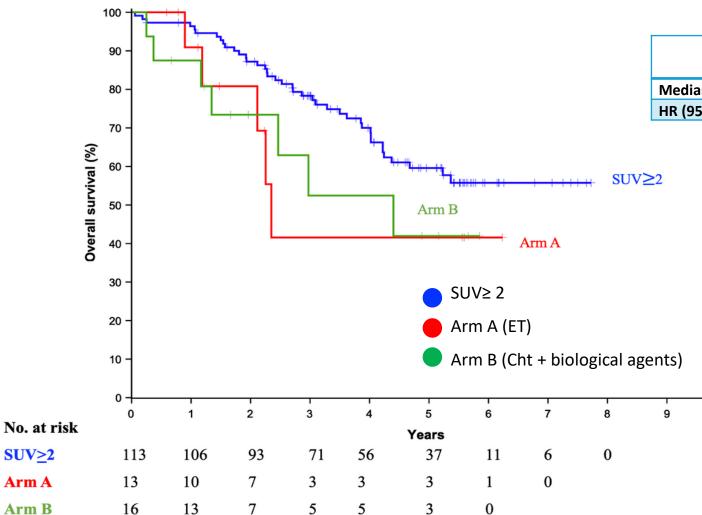
It was expected that \approx 50% of the pts (n=110) show a 18F-FES SUV < 2 computed as the mean of values for up to the 3 largest tumor sites in the whole-body acquisition for each patient.

ET-FES Consort Diagram

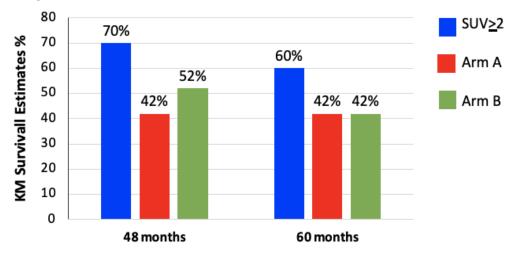

Baseline characteristics

Patients characteristics	Registered (n=113)	Arm A (n=13)	Arm B (n=16)	Total (n=142)
Median age (range) - yrs	66 (36-90)	60 (38-79)	62 (38-87)	65 (36-90)
Menopausal status Pre/peri-menopausal Post-menopausal	14 (12.4) 99 (86.6)	2 (15.4) 11 (84.6)	5 (31.3) 11 (68.7)	21 (14.8) 121 (85.2)
ECOG PS 0 1	89 (77.9) 24 (22.1)	10 (76.9) 3 (23.1)	14 (87.5) 2 (12.5)	113 (79.6) 29 (20.4)
Hormone Receptor Status ER>50%	100 (88.5)	13 (100.0)	15 (93.7)	128 (90.1)
Disease-Free Interval DFI <u><</u> 24 mos DFI > 24 mos	11 (9.7) 75 (66.4)	1 (7.7) 9 (69.2)	1 (6.3) 14 (87.5)	13 (9.2) 98 (69.0)
Metastatic ab initio	27 (23.9)	3 (23.1)	1 (6.2)	31 (21.8)
Prior Treatment Prior Neo/Adjuvant CT Prior Adjuvant ET	68 (60.2) 78 (69.0)	9 (69.2) 8 (61.5)	11 (68.8) 13 (81.3)	88 (62.0) 99 (69.7)
Site of metastases Bone only Bone + other Visceral any Soft tissue any Other	41 (36.3) 31 (27.4) 38 (33.6) 37 (32.7) 8 (7.1)	4 (30.8) 3 (23.1) 5 (38.5) 5 (38.5) 1 (7.7)	5 (31.3) - 6 (37.5) 6 (37.5) 1 (6.3)	50 (35.2) 34 (23.9) 49 (34.5) 48 (33.8) 10 (7.0)

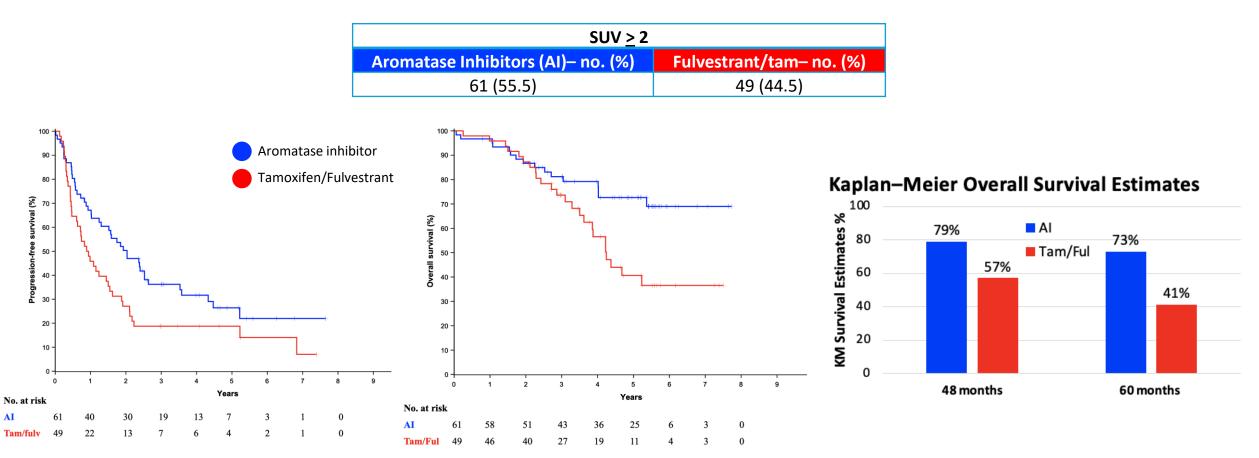
Duration of Treatment and Efficacy


- Accrual period: April 25, 2015 to December 20, 2020
- Median follow up 62.4 months (IQR 36.2 68.4 months)
- At the cut-off date of 31 December 2023 104 patients (73.2%) had disease progression and 53 died (37.3%)
- At time of analysis, single agent ET was still ongoing in 39 patients with SUV > 2 (35.5%)

Final analysis results: KM analysis of PFS


		SUV<2				
	18F-FES SUV <u>></u> 2	Arm A	Arm B			
Median PFS, mos (range, 95%CI)	18.0 (11.2-23.1)	12.4 (3.1 – 59.6)	23.0 (7.7 – 30.0)			
HR (95%CI)		0.71 (0.29 – 1.72)				

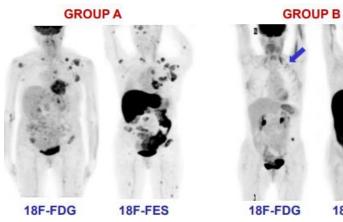
Final analysis results: KM analysis of OS



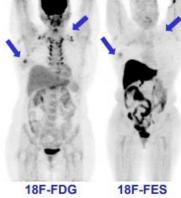
		SUV<2				
	18F-FES SUV <u>></u> 2	Arm A	Arm B			
Median OS, mos (range, 95%CI)	Not reached	28.2 (14.2 - NE)	52.8 (16.2 – NE)			
HR (95%CI)		0.97 (0.31 – 3.09)				

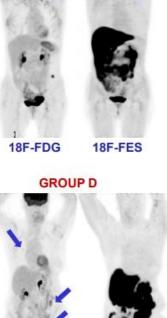
Kaplan–Meier Overall Survival Estimates

Final analysis results: KM analysis by ET


	AI	Fulvestrant/tam				
12 mos (95%Cl)	67.1 (53.8-77.4)	45.8 (31.4-59.1)				
24 mos (95%Cl)	50.3 (37.2-62.1)	27.1 (15.5-40.0)				
HR (95%Cl) - p	0.61 (0.40-0.95) p=0.026					

	AI	Fulvestrant/tam					
48 mos, (95%Cl)	79.2 (66.2-87.7)	56.6 (39.7-70.3)					
60 mos (95%Cl)	72.6 (58.5-82.6) 40.6 (24.5-56						
HR (95%Cl) - p	0.45 (0.24-0.85) p=0.0011						


Heterogeneity between 18F-FES and 18F-FDG in ET-FES Study


PTS INCLUDED IN THE ANALYSIS	N° Pts	%
Group A 18F-FES & 18F-FDG ALL LESIONS 18F-FES POSITIVE	53/79	67.1%
Group B 18F-FES & 18F-FDG 50% OF LESIONS 18F-FES POSITIVE	11/79	13.9%
Group C 18F-FES & 18F-FDG 25% OF LESIONS 18F-FES POSITIVE	5/79	6.3%
Group D 18F-FES & 18F-FDG ALL LESIONS 18F-FES NEGATIVE	10/79	12.7%

Overall, 26/79 (33%) patients, with ER+ MBC had heterogeneous 18F-FES SUV uptake

GROUP C

18F-FES

18F-FDG

The use of ET in discordant cases (B/C/D) was associated with a 79% increase in the risk of PD

A Gennari et al, presented at ESMO 2017

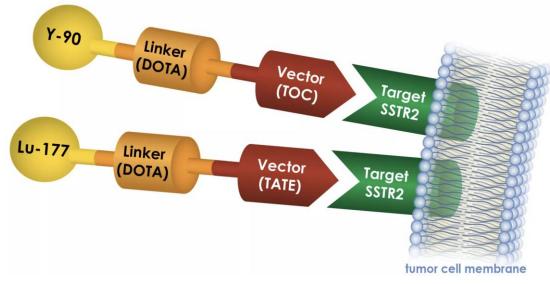
Conclusions

ER+/HER2- MBC patients can be divided in two groups based on the overall endocrine sensitivity measured by 18F-FES SUV at different metastatic sites.

18F-FES CT/PET may be used as a **predictive tool** of efficacy of ET to assess overall endocrine sensitivity

Endocrine sensitive patients (SUV max >2) treated with single agent ET have a **prolonged overall survival** (60% alive at 5 years)

In endocrine sensitive patients PFS and OS related to the use of AI was significantly higher than ER directed agents (fulvestrant or tamoxifen)


18F-FES CT/PET can be used as a **complementary method to biopsy**

WHAT IS THERANOSTICS? for medical oncologists

THERANOSTICS is a combination of the terms **THERA**peutics and diag**NOSTICS**. Theranostics is the term used to describe the combination of using one radioactive tracer to identify (diagnose) with NM techniques (e.g. SPECT, PET) a target and a second radioactive drug to deliver therapy to treat the main tumor and any metastatic tumors.

Two phases:

- 1) Diagnostic phase
- 2) Therapeutic phase

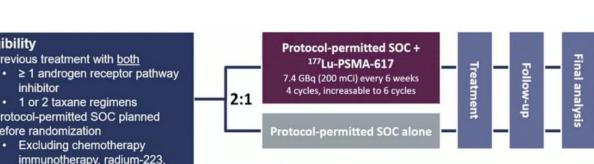
ntps://uihc.org/health-topics/what-theranostics

Lutetium-177–PSMA-617 for CT pretreated mCRPC **VISION** prostate specific membrane antigen

Other secondary endpoints

Safety and tolerability

and pain


FACT-P

EQ-5D-5L

Biomarkers including PSA

Health-related quality of life

Brief Pain Inventory – Short Form

Alternate primary endpoints

- Radiographic progression-free survival
- Overall survival

Key secondary endpoints

- Time to first symptomatic skeletal event
- RECIST v1.1 overall response rate
- RECIST v1.1 disease control rate

Karim Fizazi

marrow function

with 68Ga-PSMA-11

Eligibility

Previous treatment with both

1 or 2 taxane regimens

Protocol-permitted SOC planned

Excluding chemotherapy

investigational drugs

ECOG performance status 0-2

Adequate major organ and bone

PSMA-positive mCRPC on PET/CT

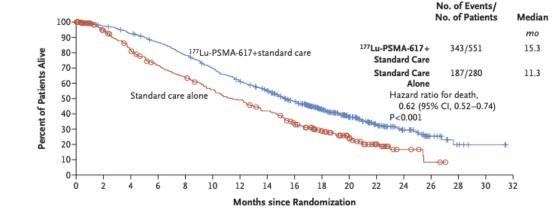
~87% of patients scanned met the VISION

imaging criteria for PSMA-positive mCRPC

inhibitor

before randomization

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use


CT, computed tomography; ECOG, Eastern Cooperative Oncology Group; EQ-5D-5L, European Quality of Life (EuroQol) – 5 Domain 5 Level scale; FACT-P, Functional Assessment of Cancer Therapy – Prostate; mCRPC, metastatic astration-resistant prostate cancer; PET, positron emission tomography; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; RECIST, Response Evaluation Criteria in Solid Turnours; SOC, standard of care

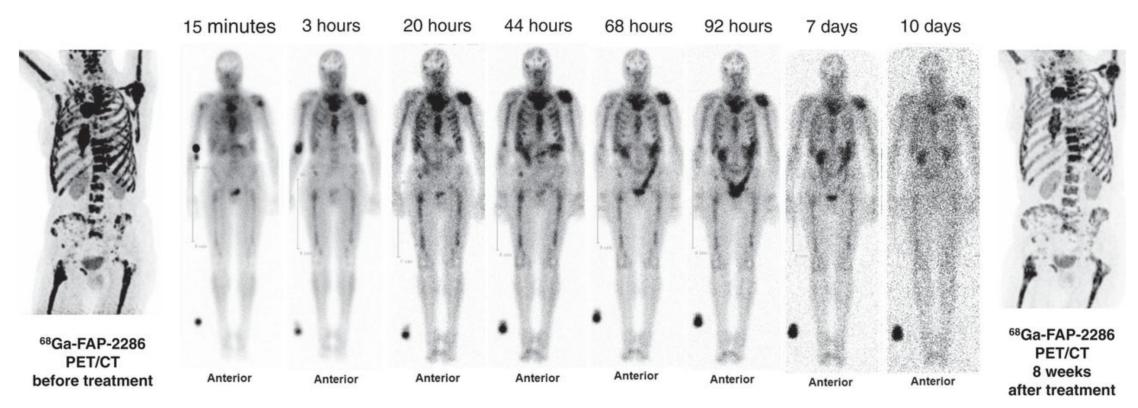
Imaging-Based Progression-free Survival 100-No. of Events/ No. of Patients Median 90 cent of Patients without Disease Progression mo 80 8.7 177Lu-PSMA-617+ 254/385 70-Standard Care 60-¹⁷⁷Lu-PSMA-617+standard care Standard Care 93/196 3.4 50-Alone Hazard ratio for progression or death, 40-0.40 (99.2% CI, 0.29-0.57) 30-P<0.001 20-Standard care alone 10 12 0 10 14 16 18 20 22 8 Months since Randomization

No. at Risk 177L

¹⁷⁷ Lu-PSMA-617+standard care	385	362	272	215	182	137	88	71	49	21	6	1
Standard care alone	196	119	36	19	14	13	7	7	3	2	0	0

Overall Survival

No. at Risk 177Lu-PSMA-617+standard care 551 535 506 470 425 377 332 289 236 166 112 63 2 0 203 173 155 133 117 Standard care alone 280 238 98 73 51 33 16 0 0


Sartor O et al. N Engl J Med. 2021;385(12):1091-1103

2025 ESMO TAT Alessandra Gennari, MD PhD

THERANOSTICS IN BREAST CANCER

Fibroblast Activation Protein (FAP) is a promising target for diagnosis and therapy of numerous malignant tumors. FAP-2286 is the conjugate of a fap-binding peptide, which can be labeled with radionuclides for the

¹⁷⁷Lu-FAP-2286 PTRT

PTRT using 2.4 GBq ¹⁷⁷Lu-FAP-2286

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Thank you

alessandra.gennari@uniupo.it