Pearls from ESMO 2016

Mario Giuliano
Università degli Studi di Napoli Federico II

Napoli 10-11 Marzo 2017
ESMO 2016: the “record meeting”

• ESMO 2016 has broken records of attendance
 • 20,522 participants

• 1,640 studies presented, including 47 late-breaking trials
 • A record number of research published in major medical journals such as NEJM, The Lancet Oncology and JAMA

• Several practice-changing studies with positive results
 • ENGOT-OV16/NOVA concerning landmark study for patients with recurrent ovarian cancer
 • Keynote-024 and Keynote-021 presenting new immunotherapeutic options for advanced lung cancer
 • Monaleesa 2 in HER2 negative advanced breast cancer
 • EORTC 18071 with good survival results for patients with stage III melanoma
 • Checkmate 141 study of patient reported outcomes in head and neck cancers
Pearls from ESMO 2016

Advanced Breast Cancer

- **ER+ Disease**
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition

- **HER2+ Disease**
 - Trastuzumab biosimilars

- **New Directions**
 - New potential agents
 - New potential targets

Early Breast Cancer

- **Neoadjuvant therapy**
 - Interim results of neoMONARCH study

- **Adjuvant therapy**
 - Concurrent vs. sequential trastuzumab

- **Molecular marker assays and patient outcome**

- **Identification of higher risk population**
Pearls from ESMO 2016

Advanced Breast Cancer

- **ER+ Disease**
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition

- **HER2+ Disease**
 - Trastuzumab biosimilars

- **New Directions**
 - New potential agents
 - New potential targets

Early Breast Cancer
FALCON Trial
Study Design

- Postmenopausal women
- Locally advanced or metastatic breast cancer
- ER+ and/or PgR+
- Endocrine therapy-naïve

N = 450 patients for 306 progression events;
If true PFS HR was 0.69 this would provide 90% power at the 5% two-sided level (log-rank test)
Subgroup analysis of PFS for pre-defined baseline covariates

Stratification factors:
- Prior chemo for MBC
- Measurable disease
- Locally advanced vs. MBC

Fulvestrant 500 mg
(500 mg IM on days 0, 14, 28 then every 28 days) + Placebo

Anastrozole 1 mg + Placebo

Primary endpoint: PFS
Secondary: OS, ORR, CBR, DoR, DoCB, HRQoL, Safety

<table>
<thead>
<tr>
<th></th>
<th>Total (N=462)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any prior chemotherapy, n (%)</td>
<td>160 (34.6%)</td>
</tr>
<tr>
<td>Advanced disease</td>
<td>79 (17.1%)</td>
</tr>
<tr>
<td>Adjuvant / neoadjuvant</td>
<td>62 / 27 (13.4%/5.8%)</td>
</tr>
<tr>
<td>Receptor status, n (%)</td>
<td></td>
</tr>
<tr>
<td>ER+ / PgR+</td>
<td>354 (76.6%)</td>
</tr>
<tr>
<td>ER+ / PgR-</td>
<td>87 (18.8%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>17 (3.7%)</td>
</tr>
<tr>
<td>Overall disease classification, n (%)</td>
<td></td>
</tr>
<tr>
<td>Locally advanced disease</td>
<td>60 (13.0%)</td>
</tr>
<tr>
<td>Metastatic disease</td>
<td>402 (87.0%)</td>
</tr>
<tr>
<td>Visceral disease, n (%)</td>
<td>254 (55.0%)</td>
</tr>
<tr>
<td>Measurable disease, n (%)</td>
<td>389 (84.2%)</td>
</tr>
</tbody>
</table>

Ellis et al., ESMO 2016
FALCON Trial
Results

Primary Endpoint met: Benefit in PFS
16.6 vs 13.8 months, HR 0.797

Ellis et Al., ESMO 2016
Pearls from ESMO 2016

Advanced Breast Cancer

• ER+ Disease
 • Single agent ET
 • Combination Strategies
 • CDK 4/6 inhibition

• HER2+ Disease
 • Trastuzumab biosimilars

• New Directions
 • New potential agents
 • New potential targets

Early Breast Cancer
The Role of CDK4/6 in HR+ Breast Cancer

- Rb binding inactivates E2F, which regulates genes important for transition through the G1/S cell cycle restriction point\(^1,2\)
- Phosphorylation of Rb by CDK4/6 leads to dissociation of E2F from Rb and cell cycle progression\(^1,2\)
- Increased CDK4/6 activity driven by perturbations of other pathways is associated with endocrine therapy resistance\(^1,2\)

MONALEESA-2
Study Design

- Postmenopausal women with HR+/HER2– advanced breast cancer
- No prior therapy for advanced disease
- N=668

Randomization (1:1)
Stratified by the presence/absence of liver and/or lung metastases

Ribociclib (600 mg/day)
3-weeks-on/1-week-off
+ Letrozole (2.5 mg/day)
n=334

Placebo
+ Letrozole (2.5 mg/day)
n=334

Primary endpoint
- PFS (locally assessed per RECIST v1.1)

Secondary endpoints
- Overall survival (key)
- Overall response rate
- Clinical benefit rate
- Safety

- Tumor assessments were performed every 8 weeks for 18 months, then every 12 weeks thereafter
- Final analysis planned after 302 PFS events
 - 93.5% power to detect a 33% risk reduction (hazard ratio 0.67) with one-sided α=2.5%
- Interim analysis planned after ~70% PFS events
 - Two-look Haybittle–Peto stopping criteria: hazard ratio ≤0.56 and p<0.0000129

PFS, progression-free survival.
MONALEESA-2 is registered at ClinicalTrials.gov (NCT01958021).

Hortobagyi G et al ESMO 2016 LBA 1
MONALEESA-2
Interim Analysis on Primary Endpoint

Median follow-up: 15.3 months

<table>
<thead>
<tr>
<th>PFS (Investigator Assessment)</th>
<th>Ribociclib + Let n=334</th>
<th>Placebo + Let n=334</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events, n (%)</td>
<td>93 (28)</td>
<td>150 (45)</td>
</tr>
<tr>
<td>Median PFS, months (95% CI)</td>
<td>NR (19.3–NR)</td>
<td>14.7 (13.0–16.5)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.556 (0.429–0.720)</td>
<td>0.00000329</td>
</tr>
<tr>
<td>One-sided p value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFS results by independent central review: hazard ratio 0.592 (95% CI: 0.412–0.852; p=0.002)

Let, letrozole; NR, not reached.

Hortobagyi G et al ESMO 2016 LBA 1
MONALEESA-2 Subgroup Analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>n (%)</th>
<th>Favor Ribociclib + Let</th>
<th>Favor Placebo + Let</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>668 (100)</td>
<td></td>
<td></td>
<td>0.556 (0.429–0.720)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65 years</td>
<td>373 (56)</td>
<td></td>
<td></td>
<td>0.523 (0.378–0.723)</td>
</tr>
<tr>
<td>≥65 years</td>
<td>295 (44)</td>
<td></td>
<td></td>
<td>0.608 (0.394–0.937)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>51 (7.6)</td>
<td></td>
<td></td>
<td>0.387 (0.166–0.906)</td>
</tr>
<tr>
<td>Non-Asian</td>
<td>568 (85)</td>
<td></td>
<td></td>
<td>0.607 (0.459–0.804)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>407 (61)</td>
<td></td>
<td></td>
<td>0.588 (0.422–0.820)</td>
</tr>
<tr>
<td>1</td>
<td>261 (39)</td>
<td></td>
<td></td>
<td>0.528 (0.348–0.801)</td>
</tr>
<tr>
<td>ER/PgR status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+ and PgR+</td>
<td>546 (82)</td>
<td></td>
<td></td>
<td>0.616 (0.461–0.823)</td>
</tr>
<tr>
<td>Other</td>
<td>122 (18)</td>
<td></td>
<td></td>
<td>0.358 (0.196–0.647)</td>
</tr>
<tr>
<td>Liver or lung involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>295 (44)</td>
<td></td>
<td></td>
<td>0.547 (0.360–0.832)</td>
</tr>
<tr>
<td>Yes</td>
<td>373 (56)</td>
<td></td>
<td></td>
<td>0.569 (0.409–0.792)</td>
</tr>
<tr>
<td>Bone-only disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>521 (78)</td>
<td></td>
<td></td>
<td>0.541 (0.405–0.723)</td>
</tr>
<tr>
<td>Yes</td>
<td>147 (22)</td>
<td></td>
<td></td>
<td>0.690 (0.381–1.249)</td>
</tr>
<tr>
<td>De novo disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>441 (66)</td>
<td></td>
<td></td>
<td>0.603 (0.447–0.814)</td>
</tr>
<tr>
<td>Yes</td>
<td>227 (34)</td>
<td></td>
<td></td>
<td>0.445 (0.267–0.750)</td>
</tr>
<tr>
<td>Prior (neo)adjuvant endocrine therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSAI and others†</td>
<td>53 (7.9)</td>
<td></td>
<td></td>
<td>0.448 (0.193–1.038)</td>
</tr>
<tr>
<td>Tamoxifen or exemestane</td>
<td>293 (44)</td>
<td></td>
<td></td>
<td>0.570 (0.393–0.826)</td>
</tr>
<tr>
<td>None</td>
<td>322 (48)</td>
<td></td>
<td></td>
<td>0.570 (0.380–0.854)</td>
</tr>
<tr>
<td>Prior (neo)adjuvant chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>377 (56)</td>
<td></td>
<td></td>
<td>0.548 (0.373–0.806)</td>
</tr>
<tr>
<td>Yes</td>
<td>291 (44)</td>
<td></td>
<td></td>
<td>0.548 (0.384–0.780)</td>
</tr>
</tbody>
</table>

*NSAI, non-steroidal aromatase inhibitor.
†Excludes patients who had received tamoxifen.
PALOMA-2
Biomarker Analysis

Postmenopausal ER+ HER2– advanced breast cancer with no prior treatment for advanced disease AI-resistant patients excluded N=666

Randomised 2:1

- Primary endpoint: PFS (investigator assessed)
- Secondary endpoints: Response, OS, safety, biomarkers, PROs

Finn R, et al. ASCO 2016, Abstract 504 (oral abstract)
PALOMA-2

Subgroup Analysis: PFS by biomarker

Qualitative Analysis

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>666</td>
<td>0.58 (0.46–0.72)</td>
</tr>
<tr>
<td>ER+</td>
<td>504</td>
<td>0.57 (0.44–0.74)</td>
</tr>
<tr>
<td>ER-</td>
<td>62</td>
<td>0.41 (0.22–0.75)</td>
</tr>
<tr>
<td>Rb+</td>
<td>512</td>
<td>0.53 (0.42–0.68)</td>
</tr>
<tr>
<td>Rb-</td>
<td>51</td>
<td>0.68 (0.31–1.48)</td>
</tr>
<tr>
<td>Cyclin D1+</td>
<td>549</td>
<td>0.56 (0.44–0.71)</td>
</tr>
<tr>
<td>Cyclin D1-</td>
<td>15</td>
<td>1.0 (0.29–3.46)</td>
</tr>
<tr>
<td>p16+</td>
<td>466</td>
<td>0.52 (0.40–0.67)</td>
</tr>
<tr>
<td>p16-</td>
<td>84</td>
<td>0.73 (0.39–1.36)</td>
</tr>
<tr>
<td>Ki-67 ≤20%</td>
<td>318</td>
<td>0.53 (0.38–0.74)</td>
</tr>
<tr>
<td>Ki-67 >20%</td>
<td>235</td>
<td>0.57 (0.41–0.79)</td>
</tr>
</tbody>
</table>

Quantitative Analysis

<table>
<thead>
<tr>
<th>Percentile</th>
<th>n</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>666</td>
<td>0.58 (0.46–0.72)</td>
</tr>
<tr>
<td>ER status</td>
<td>≤25%</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>>25% to <75%</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>≥75%</td>
<td>142</td>
</tr>
<tr>
<td>Rb status</td>
<td>≤25%</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>>25% to <75%</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>≥75%</td>
<td>249</td>
</tr>
<tr>
<td>Cyclin D1</td>
<td>≤25%</td>
<td>141</td>
</tr>
<tr>
<td>status</td>
<td>>25% to <75%</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>≥75%</td>
<td>247</td>
</tr>
<tr>
<td>p16 status</td>
<td>≤25%</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>>25% to <75%</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>≥75%</td>
<td>152</td>
</tr>
</tbody>
</table>

HR=hazard ratio; LET=letrozole; PAL=palbociclib; PCB=placebo; PFS=progression-free survival.

Finn R et al. ESMO 2016 LBA15
PALOMA-2
Impact of Palbociclib on Quality of Life

No significant differences between the treatment groups in change from baseline scores for Physical, Social/Family, Emotional, and Functional Well-Being were observed.

Data consistent with PALOMA-3 (Annals Oncol)

Rugo et al. ESMO 2016, 225PD
Pearls from ESMO 2016

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition

- HER2+ Disease
 - Trastuzumab biosimilars

- New Directions
 - New potential agents
 - New potential targets

Early Breast Cancer
Biological Complexity of Monoclonal Antibodies

Intrinsic Complexity
- Size
- Structure
- Physiochemistry
- Heterogeneity

Additional Complexity
- Manufacturing process
- Formulation
- Handling
- Route of administration

Immunogenicity
- Host related: genetic predisposition by MHC alleles, immunosuppression
- Product related: Structural properties, glycosylation, impurities, formulation, storage, aggregates
Trastuzumab Biosimilar Studies
Design

Heritage Study – Trastuzumab MYL-1401O Biosimilar

N=458

Part 1: Combined Treatment/PK analysis
- MYL-1401O Loading dose 8 mg/kg
- Maintenance dose 6 mg/kg Q3W
- The day after trastuzumab infusion
- Decrease 75 mg/m^2 Q3W cycles
- or Paclitaxel 80 mg/m^2 weekly
- 30 min after trastuzumab infusion

Part 2: Single Treatment
- MYL-1401O Maintenance dose until disease progression
- Stable disease after 8 cycles

Stable disease can continue with Part 1 beyond Cycle 8

Herceptin® Loading dose 8 mg/kg
- Maintenance dose 6 mg/kg Q3W
- Stable disease after 8 cycles

Up to 28 days
- Cycle 1
- Cycles 2-8

R = Randomization

Rugo H et Al., ESMO 2016. Abstract #LBA

Trastuzumab BCD-022 Biosimilar

N=110

Randomization

Cycle 1
- Response evaluation
- Progression or unacceptable toxicity
- Treatment discontinuation

Cycle 2
- Response evaluation

Cycle 3
- Response evaluation

Cycle 4
- Response evaluation

Cycle 5
- Response evaluation

Cycle 6
- Response evaluation

Shustova M et Al., ESMO 2016. Abstract 224 PD
Trastuzumab Biosimilar Studies

Results

Heritage Study – Trastuzumab MYL-1401O Biosimilar

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MYL-1401O + Taxane (N=230)</th>
<th>Herceptin + Taxane (N=228)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate n (%)</td>
<td>160 (69.6)</td>
<td>146 (64.0)</td>
</tr>
<tr>
<td>95% CI</td>
<td>(63.62, 75.51)</td>
<td>(57.81, 70.26)</td>
</tr>
<tr>
<td>Ratio of ORR: MYL-1401O/Herceptin (FDA)</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>90% CI</td>
<td>(0.974, 1.211)</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.954, 1.237)</td>
<td></td>
</tr>
<tr>
<td>Difference in ORR: MYL-1401O-Herceptin (EMEA)</td>
<td>5.53</td>
<td></td>
</tr>
<tr>
<td>90% CI</td>
<td>(-1.70, 12.69)</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>(-3.08, 14.04)</td>
<td></td>
</tr>
</tbody>
</table>

Trastuzumab BCD-022 Biosimilar

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group 1 (n = 54)</th>
<th>Group 2 (n = 56)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORR</td>
<td>30</td>
<td>29</td>
<td>0.8622</td>
</tr>
<tr>
<td>53.57</td>
<td>(40.70 - 65.98)</td>
<td>53.70</td>
<td>(40.60 - 66.31)</td>
</tr>
</tbody>
</table>

Difference in ORR -0.13% (-19.83% – 18.35%)

1. Yates-corrected Pearson’s χ² test

Secondary outcome measures

![Graph showing secondary outcome measures for Group 1 and Group 2](image)

Rugo H et al., ESMO 2016. Abstract #LBA

Shustova M et al., ESMO 2016. Abstract 224 PD
Pearls from ESMO 2016

Advanced Breast Cancer

• ER+ Disease
 • Single agent ET
 • Combination Strategies
 • CDK 4/6 inhibition

• HER2+ Disease
 • Trastuzumab biosimilars

• New Directions
 • New potential agents
 • New potential targets

Early Breast Cancer
Phase II, PM01183 Monotherapy in Metastatic Breast Cancer

Lurbinectedin (PM01183) is a trabectedin analog:
- Inhibits active transcription (RNA Pol II degradation) (1):
 - Generates double strand DNA breaks
 - Affects tumor microenvironment

Deficient homologous recombination system favors PM01183-induced apoptosis (2)

Antitumor activity observed in patients resistant to platinum compounds (3)

Two Phase III trials are currently ongoing, one as a single agent in platinum resistant ovarian cancer, and one in combination with doxorubicin in 2nd line SCLC

3. Poveda A. et al. ASCO 2014, oral presentation
Phase II, PM01183 Monotherapy In Metastatic Breast Cancer (MBC) – 7mg Flat Dose Amended To 3.5mg/m²

BRCA1/2 mutation (Arm A)

- **MBC**
 - Ductal/Lobular
 - Up to 3 prior advanced chemotherapy regimens
 - PS: 0-1
 - Asymptomatic, non-steroid requiring CNS metastasis
 - Measurable disease by RECIST v1.1

BRCA 1/2 mutation after PARPi (Arm A1)

- **Statistical hypotheses:**
 - H_0: ORR ≤ 20% vs. H_1: ORR ≥ 40%
 - α=0.025 (one-sided); Power = 90%

- **Further development:**
 - ≥ 17 confirmed responses

Non (or UNK) BRCA1/2 mutation (Arm B)

- **Statistical hypotheses:**
 - Lower bound CIR% ≥ 5%

- **Balmaña, SABCS 2014, poster P3-13-01 Cruz. ESMO 2016. abstract 15200**
Response Data For Specific Subpopulations

<table>
<thead>
<tr>
<th></th>
<th>Prior Platinum</th>
<th>BRCA</th>
<th>Hormone Status</th>
<th>Prior Chemo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (n: 27)</td>
<td>Yes (n: 27)</td>
<td>1 (n: 31)</td>
<td>2 (n: 23)</td>
</tr>
<tr>
<td>ORR (95% CI)</td>
<td>56% (35.3-55.6)</td>
<td>26% (11.1-25.9)</td>
<td>26% (11.9-25.8)</td>
<td>61% (38.5-60.9)</td>
</tr>
<tr>
<td>Duration of Response (95% CI)</td>
<td>10.2 m (3.0-13.5)</td>
<td>5.9 m (2.8-12.8)</td>
<td>6.6 m (2.8-12.8)</td>
<td>6.7 m (3.4-13.5)</td>
</tr>
<tr>
<td>Disease control rate</td>
<td>25 (93%)</td>
<td>19 (70%)</td>
<td>23 (74%)</td>
<td>22 (96%)</td>
</tr>
<tr>
<td>Clinical benefit (CR+PR+SD ≥ 3 mo)</td>
<td>19 (70%)</td>
<td>14 (52%)</td>
<td>14 (45%)</td>
<td>19 (83%)</td>
</tr>
</tbody>
</table>

Including 2 patients also HER-2 +
Balmana J et al. ESMO 2016 Abstract 2230
Single Agent Activity Of Her2 Antibody Drug-Conjugate DS-8201A

Structure of DS-8201a compared with T-DM1

<table>
<thead>
<tr>
<th></th>
<th>DS-8201a</th>
<th>T-DM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>Anti-HER2 Ab</td>
<td>Trastuzumab</td>
</tr>
<tr>
<td>Payload</td>
<td>Topoisomerase I inhibitor (DXd)</td>
<td>Tubulin inhibitor (DM1)</td>
</tr>
<tr>
<td>DAR*</td>
<td>7-8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* DAR: Average drug-to-antibody Ratio

Overall response was PD due to new lesion
Current IHC status although there were prior HER2 therapies

Tamura K et al. ESMO 2016 Abstract LBA 17
Pathways Altered in Breast Carcinomas

N=8564

<table>
<thead>
<tr>
<th>Pathway</th>
<th>ERBB Pathway</th>
<th>Hormone Therapy Resistant (ESR1 Mut)</th>
<th>HR Deficient</th>
<th>IO Sensitive</th>
<th>PI3K/AKT/mTOR Pathway</th>
<th>FGFR Pathway</th>
<th>CDK Pathway</th>
<th>Other Kinases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cases</td>
<td>1294</td>
<td>796</td>
<td>1266</td>
<td>419</td>
<td>4375</td>
<td>2650</td>
<td>2685</td>
<td>630</td>
</tr>
<tr>
<td>% Total Cases</td>
<td>15%</td>
<td>9%</td>
<td>15%</td>
<td>5%</td>
<td>51%</td>
<td>31%</td>
<td>31%</td>
<td>7%</td>
</tr>
<tr>
<td>Unique Cases</td>
<td>274</td>
<td>109</td>
<td>309</td>
<td>48</td>
<td>1442</td>
<td>226</td>
<td>231</td>
<td>87</td>
</tr>
<tr>
<td>% Unique Cases</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>1%</td>
<td>17%</td>
<td>3%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Therapy Examples</td>
<td>Trastuzumab, Pertuzumab, Afatinib, Lapatinib, Neratinib</td>
<td>[Fulvestrant, Tamoxifen]</td>
<td>Olaparib</td>
<td>Pembrolizumab, Nivolumab, Atezolizumab, Ipilimumab</td>
<td>Everolimus, Temsirolimus</td>
<td>Pazopanib, Ponatinib</td>
<td>Palbociclib</td>
<td>Sorafenib, Regorafenib, Dabrafenib, Vemurafenib, Crizotinib, Cabozantinib, Sunitinib</td>
</tr>
</tbody>
</table>

Ross JR et al. ESMO Abstract 229PD
Pearls from ESMO 2016

Advanced Breast Cancer

- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition

- HER2+ Disease
 - Trastuzumab biosimilars

- New Directions
 - New potential agents
 - New potential targets

Early Breast Cancer

- Neoadjuvant therapy
 - Interim results of neoMONARCH study

- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab

- Molecular marker assays and patient outcome

- Identification of higher risk population
NeoMONARCH

Study Design

neoMONARCH: Phase II study design

- Abemaciclib 150 mg BID is tolerable when dosed on a continuous schedule with endocrine therapy

- The most common adverse event has been diarrhea
 - Typically occurred within the first 7 days of treatment
 - Manageable with use of loperamide or dose reduction

- Loperamide was administered prophylactically for the first 28 days then at discretion of investigator

Post-menopausal women (N=220) HR+, HER2-breast cancer stage: I (T ≥1 cm), II, IIIA or IIIB suitable for neoadjuvant endocrine therapy

Core biopsy at baseline

Randomization

- Anastrozole 1 mg QD
- Abemaciclib 150 mg Q12H + Anastrozole 1 mg QD
- Abemaciclib 150 mg Q12H

Core biopsy after 2 weeks of treatment

Primary endpoint: Compare the change from baseline in Ki67 expression after 2 weeks of therapy

- Abemaciclib 150 mg Q12H + Anastrozole 1 mg QD

Core biopsy after 14 weeks of treatment

Surgery (optional)

Abbreviations:

- HER2 = human epidermal growth factor receptor 2
- HR = hormone receptor
- Q12H = every 12 hours
- QD = once daily

Participants receive loperamide with each dose of abemaciclib

Participants who experience benefit following 14 weeks may remain on neoadjuvant therapy for up to 8 additional weeks
NeoMONARCH
Change in Ki67

- Study met the boundary for statistical significance at the interim analysis (boundary p < 0.03)

Geometric Mean Change

Complete Cell Cycle Arrest
Ki67 index <2.7% at 2 weeks

- OR = 7.8 (2.0, 30.8)
- 7.2 (2.0, 26.2)

Mean Change in Ki67 Expression (%)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>n</th>
<th>Mean Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastrozole 1 mg</td>
<td>22</td>
<td>-71.0%</td>
</tr>
<tr>
<td>Abemaciclib 150 mg</td>
<td>23</td>
<td>-93.5%</td>
</tr>
<tr>
<td>Abemaciclib 150 mg +</td>
<td>19</td>
<td>-93.1%</td>
</tr>
</tbody>
</table>

Complete Cell Cycle Response Rate (%)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Responders</th>
<th>Complete Cell Cycle Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastrozole 1 mg</td>
<td>5</td>
<td>22.7%</td>
</tr>
<tr>
<td>Abemaciclib 150 mg</td>
<td>16</td>
<td>69.6%</td>
</tr>
<tr>
<td>Abemaciclib 150 mg +</td>
<td>13</td>
<td>68.4%</td>
</tr>
</tbody>
</table>

Abbreviations: GMR = geometric mean ratio, OR = odds ratio
*Geometric Mean Ratio (GMR), 2-sided 90% confidence interval (CI), p-value, p-values are based on a one-sided hypothesis test from a linear model with treatment, PR status (positive versus negative/unknown) and tumor size (<2 cm versus ≥2 cm and <5 cm versus ≥5 cm) as fixed effects.
*A responder is identified as a patient with a ln(Ki67) value of less than 1. Odds ratio (OR), 2-sided 90% CI, p value. p-value is calculated by Fisher’s Exact test of a one-sided hypothesis.
Pearls from ESMO 2016

Advanced Breast Cancer

• ER+ Disease
 • Single agent ET
 • Combination Strategies
 • CDK 4/6 inhibition

• HER2+ Disease
 • Trastuzumab biosimilars

• New Directions
 • New potential agents
 • New potential targets

Early Breast Cancer

• Neoadjuvant therapy
 • Interim results of neoMONARCH study

• Adjuvant therapy
 • Concurrent vs. sequential trastuzumab

• Molecular marker assays and patient outcome

• Identification of higher risk population
Sequential vs. Concurrent Trastuzumab in EBC
NCCTG Trial

The P value (.02) did not cross the prespecified O'Brien-Fleming boundary (.00116) for the planned interim analysis

Sequential and concomitant adjuvant trastuzumab in HER2+ EBC
Results from the SIGNAL/PHARE prospective cohort

Total 5,502 patients with HER2+ EBC

PHARE
3400 patients HER2+
(NCT00381901)

SIGNAL
3000 patients HER2+
6000 patients HER2-
(RECF 1098)

SIGNAL2-ICGC
500 tumours HER2+
2000 tumours HER2-

May 2006
July 2010

May 2009
July 2011

Pivot et al, ESMO 2016
Sequential and concomitant adjuvant trastuzumab in HER2+ EBC
Results from the SIGNAL/PHARE prospective cohort

Kaplan-Meier Plot

Disease Free Survival probability

<table>
<thead>
<tr>
<th>Time since first treatment (Months)</th>
<th>1: concomitant</th>
<th>2: sequential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3566</td>
<td>3492</td>
</tr>
<tr>
<td>2</td>
<td>1893</td>
<td>1878</td>
</tr>
</tbody>
</table>

Logrank p=0.2026
HR=1.08 95%CI(0.96-1.21)

Pivot et al, ESMO 2016
Pearls from ESMO 2016

Advanced Breast Cancer

- **ER+ Disease**
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition

- **HER2+ Disease**
 - Trastuzumab biosimilars

- **New Directions**
 - New potential agents
 - New potential targets

Early Breast Cancer

- **Neoadjuvant therapy**
 - Interim results of neoMONARCH study

- **Adjuvant therapy**
 - Concurrent vs. sequential trastuzumab

- **Molecular marker assays and patient outcome**

- **Identification of higher risk population**
FIRST PROSPECTIVELY-DESIGNED OUTCOME STUDY IN ESTROGEN RECEPTOR (ER)+ BREAST CANCER (BC) PATIENTS (PTS) WITH N1MI OR 1-3 POSITIVE NODES IN WHOM TREATMENT DECISIONS IN CLINICAL PRACTICE INCORPORATED THE 21-GENE RECURRENCE SCORE (RS) RESULT

S.M. Stemmer, et al.
Risk of Distant Recurrence by RS Group

- The overall number of patients with distant recurrence by RS risk group (Low/Intermediate/High): 14/379, 20/258, 13/72, respectively.

- The rate of distant recurrence in the low RS group was 3.2% within 5 years compared to 16.9% for the high RS group.

Stemmer SM et Al., ESMO 2016. Abstract 3040
BREAST CANCER-SPECIFIC SURVIVAL IN PATIENTS WITH LYMPH NODE-POSITIVE HORMONE RECEPTOR POSITIVE INVASIVE BREAST CANCER AND 21-GENE RECURRENCE SCORE RESULTS IN THE SEER DATABASE

D.P. Miller, et al.

Abstract: 4013
5-year Breast Cancer-specific Survival (95% CI), by RS Group and Number of Positive Lymph Nodes – Total N=6,768

<table>
<thead>
<tr>
<th># Positive Nodes</th>
<th>RS <18 (N=3,919; 23.8% CT Use*)</th>
<th>RS 18-30 (N=2,380; 49.0% CT Use*)</th>
<th>RS ≥31 (N=469; 77.0% CT Use*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>5-y BCSS</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Micrometastases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,644</td>
<td>98.9% (97.4%, 99.6%)</td>
<td>998</td>
</tr>
<tr>
<td>2</td>
<td>1549</td>
<td>99.4% (98.4%, 99.8%)</td>
<td>893</td>
</tr>
<tr>
<td>3</td>
<td>458</td>
<td>97.1% (91.3%, 99.0%)</td>
<td>268</td>
</tr>
<tr>
<td>4+</td>
<td>139</td>
<td>95.1% (87.0%, 98.2%)</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>129</td>
<td>92.8% (73.5%, 98.2%)</td>
<td>117</td>
</tr>
</tbody>
</table>

*Chemotherapy (CT) use reported as ‘yes’ (vs. ‘no/unknown’)
Pearls from ESMO 2016

Advanced Breast Cancer
- ER+ Disease
 - Single agent ET
 - Combination Strategies
 - CDK 4/6 inhibition
- HER2+ Disease
 - Trastuzumab biosimilars
- New Directions
 - New potential agents
 - New potential targets

Early Breast Cancer
- Neoadjuvant therapy
 - Interim results of neoMONARCH study
- Adjuvant therapy
 - Concurrent vs. sequential trastuzumab
- Molecular marker assays and patient outcome
- Identification of higher risk population
Prognostic Role for Derived Neutrophil-to-Lymphocyte Ratio in EBC

Study design

Stratification factors
✓ Nodes
 ▪ 1-3
 ▪ 4+
✓ Center
✓ Menopausal status

R

F E C

Paclitaxel
600 mg/m²
90 mg/m²
600 mg/m²
Every 3 weeks

100 mg/m²
Weekly

dNLR expression
✓ The dNLR was constructed as follows (1):

\[
dNLR = \frac{\text{neutrophil count}}{\text{white cells} - \text{neutrophil count}} \ (10^9/L)
\]

Ocana A., ESMO 2016. Abstract 3576
Prognostic Role for Derived Neutrophil-to-Lymphocyte Ratio in EBC

Association of dNLR with outcome

By PAM50 subtypes (Luminal A, Luminal B, HER2-enriched, Basal-like)

✓ For the non luminal subgroups (HER2-enriched, basal-like), elevated levels of dNLR (median cut-off) were associated with worse prognosis regardless of treatment arm.

DFS

OS

p=0.036

p=0.042
Prognostic Role for Derived Neutrophil-to-Lymphocyte Ratio in EBC

Association of dNLR with outcome

By PAM50 subtypes

✓ For the HER2-enriched subgroup, elevated dNLR was significantly associated with DFS and non-significantly associated with OS regardless of treatment arm.

DFS

OS

\[p=0.029 \]

\[p=0.091 \]
GESTATIONAL BREAST CANCER: DISTINCTIVE MOLECULAR AND CLINICO-EPIDEMIOLOGICAL FEATURES. GEICAM/2012-03 STUDY

J. de la Haba, et al.

Abstract: 3679
esmo.org
Gestational BC: Distinctive Molecular and Clinico-Epidemiological Features

GEICAM/2012-03 Study

Conclusions: Our study suggests that GBC patients have tumors of a particularly aggressive biology, with a higher rate of basal-like subtypes and a lower proportion of luminal subtypes compared to non-GBC patients of similar age.